
APPLICATION OF THE TEST IN TESTING PROGRAM

Branko Markoski*, Predrag Pecev **, Zdravko Ivanković*, I. Setrajcic **,J. Setrajcic ***, Stamatoski
Antonio****

*University of Novi Sad, Technical Faculty "Mihajlo Pupin", Zrenjanin, Serbia
markonins@yahoo.com, ivankovic.zdravko@gmail.com

** University of Novi Sad, Faculty of Sciences, Dept. of Mathematics and Computers Sciences, Novi Sad, Serbia
predrag.pecev@gmail.com, seki_1976@yahoo.com

***University of Novi Sad , Department of Physics, Faculty of Sciences, Novi Sad, Serbia, bora@df.uns.ac.rs
****University “St. Kliment Ohridski”- Ohrid, Faculty of Technical Sciences, Bitola, Republic of Macedonia

(FYROM)

Abstract - Within software's life cycle, program testing is
very important, since quality of specification demands,
design and application must be proven. Testing of large and
complicated programs must be done as systematically as
possible, in order to obtain reliability. In case of large and
complex systems and their operating systems ad hoc testing
is used, which often could not prove quality or validity
according to specification, construction or application.
Validation and verification are terms often connected to
program testing. Verification is checkup of testing of objects
(or programs) in order to determine are they in accordance
with specifications. Verification contains analysis,
inspection, trying, as well as testing of program. About
testing the software, ordinarily we do statically analyses
(exploring of basic programs, searching for primary
problems and collecting data’s without executing the
program) and dynamic analyses (exploring behavior of
program in executing, so we acquire the data about the ways
of executing, chronological sections and integrity of testing).
Every company, which educes the software, is performing
tests of their products, and the software from market
usually contents complex variants of defects. Sometimes it is
difficult to understand how it is possible that the test omits
so obvious error.

Key words: verification, validation, test information,
specification, testing programs

I. INTRODUCTION
One of the most important aspects of the projects for

software development is the strategy of integration. The
integration can be performed at once, from the top to the
bottom, from the bottom to the top, critical part first or
with the first functional subsystem of integration and only
then to integrate the subsystems in separate phases using
any kind of basic strategy. In general, if the projects are
bigger, the strategy of integration becomes more
important.

Very small systems are often collected and tested in
one phase. For the majority of real systems, this is not
practical for two important reasons. The first is that the
system would failed in many places at once and the
attempts to debug and to re-test would be completely
impractical [PRESSMAN]. The second is that the
correspondence to the testing criteria of white box would
be very difficult, for the big quantity of details separating
the entrance data banks from the individual ciphers of the
modules. In fact, the majority of integration testing is

traditionally limited to the techniques of “black box” .The
big systems can demand many phases of integration,
beginning with the collection of modules in low-ranged
subsystems, and then the gathering of the subsystems into
bigger subsystems and finally the composition of the
subsystems of higher level into the whole system.

In order to make the strategy of integration the most
efficacious one, the techniques of integration testing have
to go well with the whole strategy of integration. In the
poly-phase integration the testing in every phase helps to
discover the error before, and to keep the system under
control. With the execution of the glance testing in the
early phase of integration, and then with the application
of rigorous criteria it is real only the big risk variant of the
“big bang” approach. Nevertheless, the execution of
rigorous testing of the whole software engaged in every
phase of integration engages a lot of unnecessary effort
doubled through phases. The solution is to overcome the
complete integration systems, to execute rigorous testing
in every phase and to reduce the effort doubling.

It is important to understand the relations between the
testing modules and the integration system. On the one
hand, the modules were tested with the use of drivers
before any integration was tried. Then the integration
system completely concentrates on the modules
interaction supposing that the details in every module are
correct. On the other, the modules and the integration
testing can be combined, verifying the details of execution
of each module in the integration context. Many projects
compromise with the combination of testing modules with
the lowest level of subsystem integration testing, and then
execute the pure integration testing on higher level. The
two aspects related to integration testing can be
convenient for any kind of task project and the integration
testing method has to be sufficiently flexible in order to be
adequate for all of them. The rest of this section explains
the techniques of equal integration structure testing,
initially only in special cases and then completely.

II. WHEN THE PROGRAM TESTING IS TO BE STOPPED?
This is the most frequent question encountered by

testers. Here are some possible answers:

• When you don’t have time,

• When further testing provokes new denials,

• When further testing does not discover new
errors,

• When you cannot create any new testing item,

• When you arrive to the point in which reduces the
number of responses,

• When the requested covering is reached,

• When all the errors are eliminated.

Unfortunately, the first answer is the most frequent
one, and the seventh cannot be guaranteed by anyone.
This leaves the tester somewhere in the middle. The
models of software reliability offer the solutions that
support the second and the third answer, both of them are
largely used in the industry. The fourth answer is insecure:
if you followed the procedures and the instructions that we
talked about, this is probably the good solution. On the
other hand, if the reason is lack of motivation, this
solution is unfortunate as much as the first one. The fifth
solution is attractive: implies the continuation of serious
testing, but the discovering of new errors reduces
dramatically. The further testing becomes very expensive
and maybe it will not be discovered any new error. If the
costs (or risk)of the rest of the errors can be defined, the
advantage is clear.

III. GENERALIYATION OF MODULE TESTING CRITERIA
The module testing criteria can often be generalized in

some possible ways. As discussed above, the most
frequent generalization is to correspond to the module
testing criteria in the context of integration, using the
whole program as the environment for testing of the
drivers for every module. But, this trivial generalization
does not use the difference between the module and the
integration testing. The application on each phase of the
poly-phase strategy of integration, for example, leads to
excessive number of unnecessary testing.

More than the testing, separately, in the module, of all
outs chosen on purpose, the structure testing on
integration level focuses the purposes of the outs that are
activated with the call of the module[MCCABE]. The
design of the technique of reduction helps those outs
chosen on purpose in the way that becomes possible to
exercise them separately during the integration testing.
The idea related to the designing of reduction is that it
begins with the control of the course of the graph of the
module, eliminates all structure controls that are not
activated with the call of the module and then it has to use
“ reduced” course of the graph related to the integration
testing. Although, but it is not obligatory, the rule of
reduction, i.e. the rule of the call says that the function of
the call (“black point”) of the knot cannot be reduced. The
rest of the rule works together in order to eliminate the
parts of the course of the graph that is not activated with
the call of the module. The deriving rule eliminates the
result of non called (“white point’) knots because the
application of this rule eliminates one knot and one edge
from the course of the graph and the cycle complexity
remains unchanged. But, this generalizes the graph in the
way that the rest of the rules can be applied. The rule of
repeating eliminates the top-test of the rings that are not

involved in the call of the module. The rule of
conditioning eliminates the declaration of conditionings
that do not contain the call in their bodies. The rule of
twisting eliminates the bottom-test that is not activated
with the call of the module

IV. EFFICACIOUSNESS OF TESTING
The thing that we would certainly want to know about

the sequence of testing items is how efficacious they are,
but it is necessary to clear what does the “efficaciousness”
mean. The easiest way is to be dogmatic: to define the
method, to use it for the testing items generating and then
to execute the testing items. But this can be corrected if
we reduce the dogmatism and if we demand that the
testers choose “appropriate methods”. We can get even
bigger improvement if we compose appropriate hybrid
methods.

The structure testing techniques give also another
choice for the testing efficaciousness. We will be able to
examine the sequence of testing items in the sense of
ways that are passed in execution. When the certain way is
passed more than once, we can talk about the redundancy.
Sometimes the redundancies have also the purpose.

The best interpretation of the testing efficaciousness is
(and this is not a miracle) the more difficult one. In fact,
we want to know how much the sequence of testing items
is efficacious in discovering errors in the program. This is
problematic for the two reasons: the first it that it is
supposed that we know all errors in the program. But this
is moving into the same cycle: if we knew them, we
would correct them. Since we don’t know all errors in the
program, we will not know, maybe never, if the testing
items, on the grounds of the given method, succeeded in
discovering them. The second reason is more theoretic:
demonstration that the program is without errors
corresponds to the famous problem of stopping from the
computer science, for which it is known that it doesn’t
have the solution. The best think we can do is to go back,
from the types of errors. When we have certain type of
error, we can choose the testing method (functional or
structural) and it is most probable that it will discover the
errors of that type. If we connect it with the knowledge
related to most probable types of errors, we will get the
pragmatic approach to the testing efficaciousness. This
implements furthermore if we follow the types (and the
frequency) of errors in the software that we develop.

There must be test set chosen with every physical
input and test set provoking simulation of every interface
control. One more criterion is very interesting. Many
authors, Cukarelas, Gerogianis, Ekonomides [9], call it a
discrimination criterion. It demands random selection of
input sequences until statistical representation of whole
endless domain is obtained. Third stage is execution and
evaluation of test scenario. Here we have two directions:
built-in test program and formalism. In principle, every
program should have two tests: one is hidden and not
available to users, and other is visible. Some programs
may contain self-testing programs also. Formalism mostly
includes hard work at formalization of ways in which
specifications are written. Structurally and object oriented
programming both contains mechanisms for formal

expression of specifications, in order to simplify
comparison between expected and real behavior. The way
in which program responds to different input data is
regulated by specification. For example, notions "input"
and "output" may be regarded in widest sense if input
values are noted with x and output values with y; then
specification may be understood as a relation connecting
input set with output set. Concerning specification, it is
not necessary to be even determined; meaning that
numerical program may give results with different
precision in different computers.

[S] ⊆ X x Y, X ≡ dom([S]) (1)

If the specification S is noted as a relation [S], and X is
input set and Y output set, then [S] is a sub-set of

Descartes product of sets X and Y, and set X is called
domain of specification. Program is modeling by so-called
programming function which copies set of inputs X into
set of outputs Y, but now as a function and not as any
relation:

[P]: X → Y (2)
where:

P is program, [P] is notation of program function, X ≡
dom([S]) presents set of inputs for which a program
terminates (as in endless loop). Program P is correct if:

dom([P])[S])=dom([S]), or if for every input

V. CONCLUSION
Software producers would like to anticipate the

number of errors in software systems before their
application in order to estimate the quality of acquired
program and the difficulties in the maintenance. This work
gives the summary and describes the process of program
testing, the problems that are to be resolved by testers and
some solutions for the efficacious elimination of errors.
The testing of big and complex programs is in general the
complicated process that has to be realized as
systematically as possible, in order to provide adequate
confidence and to confirm the quality of given application.

The testing activity shows if the given software is
harmonized with the specification. The specification is
key thing in testing. So, as the results of testing are
collected, the proofs about quality level and program
reliability appear. If the testing often discovers the
important errors, the quality and the reliability of the
program can be considered insufficient and the further
testing is necessary. On the other hand, if the errors are
minor and easy to be corrected, then the level of quality
and reliability is acceptable. The testing cannot say
definitively if the program is correct, because the not
discovered errors can remain in the program even after the
most voluminous testing. So, the usual point of view
considers successful the testing that does not discover
incorrectly any error and this is underlined with the
following testing purposes:

• the testing is the process of program execution in
order to find out the errors;

• the good testing item has the high possibility of
covering the error;

• successful testing discovers the error that until
then was not discovered .

The program testing is often identified with the
discovering of any kind of errors. There is no sense to test
errors that most probably do not exist. It is much more
efficacious to think well about the types of errors that are
most probable (or provoke the biggest damages) and then
to choose the testing methods that will certainly be able to
discover this kind of errors. The success of one set of
testing data corresponds to the successful execution of
detailed program testing. One of the main questions that
appears in program testing is the reproduction of the error
(the testers discover the errors and the programmers
eliminate the bugs). It is evident that the coordination
between the testers and the programmers should exist. The
error reproduction is the case when the best thing to do
would be to re-execute the problematic testing so that we
know when and where exactly the error occurred. So, the
ideal testing and the ideal product do not exist.

Lot of effort has recently been made in order to apply
the constructive approach, if it is not possible
completely, then partially, i.e. on certain parts of the
program.

REFERENCES
[1] Pressman R.S.,” Software Engineering “A Practitioner’s

Approach, McGraw-Hill, New York, 1992
[2] Gutjhar W., “Partition vs. Random Testing: The Influence of

Uncertainty,” IEEE Trans. Software Eng., Vol. 25, No. 5, 1999,
pp.661-674

[3] McCabe, Thomas J. & Butler, Charles W. “Design Complexity
Measurement and Testing “ Communications of the ACM 32, 12
(December 1989):1415-1425

[4] Markoski B., Hotomski P., Malbaški D., “ Symbolic Execution in
program testing “, International 4E ZEMAK symposium, Struga
2002.,FR. Macedonia

[5] Gabodi G. P. Camurati, Lavagno L., Quer S., “Disjunctive
partitioning and partitial iterative squaring: An effective �pproach
for symbolic traversal of large circuits “. In 34th Desing
Automation Conference proceedings 1997, pages 728-733,
Anaheim, Ca, USA, June 1997.ACM

[6] D. Ada, “ Software testing and software development lifecycles “,
IEEE Transactions of Software Engineering

[7] Radulovic B., Hotomski P., “ Projecting Deductive Databases with
CWA Management I Baselog system” , Novi Sad J. Math Vol.30,
No 2, 2000, pp. 133-14

[8] Hotomski P., Berković I., “ Symbolical execution of Pascal
programs in theorem prover of Baselog system, “, Tara 2002.

[9] Gerogiannis V.S, Economide K.D., Cukarelas A., " Systematically
Testing a real Time Operating system ", IEEE Trans. Software
Eng., Vol. 15, No. 5, October 1995, pp. 50-60.

[10] Carver, D., "Producing Maintainable Software," Computers and
Industrial Engineering, April 1987

[11] Chidamber, S. and C. Kemerer, " Towards a Metrics Suite for
Object Oriented Design,'' Proceedings of OOPSLA, July 1991

[12] Coleman, D. and D. Ash and B. Lowther and P. Oman, "Using
Metrics to Evaluate Software System Maintainability," IEEE
Computer, August 1994

