Model Driven Architecture is a Complex System

E. A. Cherkashih) V. V. Paramonoy S. A. IpatoV, V. S. Tertychniy and I. N. Terehifi*

* Institute of System Dynamics and Control Theory SEBRIrkutsk, Russia
™ Irkutsk State Technical University, Irkutsk, Russia
Institute of Mathematics Economics and Informaticklaitsk State University, Irkutsk, Russia

*kk

eugeneai@icc.ru

Abstract — An abstract formalization of the software propagation as a basis of a corresponding instrumental
development life cycle (process) in the theory ofomplex environment. The necessity of the modification
systems and complexes is considered. The formalization propagation results from application of the theory of

highly depends on so called reference set, which isbasis of complex systems and complexes to software life cycle.
bundle of the life cycle into a set of structures,.g., various
software model representations. An example, which appesr

to be a generalization of Model driven architecture (M), Il THE THEORY OFCOMPLEX SYSTEMS AND

is considered, as well as the present approaches and CoMPLEXES[2]
technologies for the software development if the pragsed Complexes (compositions) and systems of
model implied. compositions (configurations)X, are formed from
combinations of various elements, components, systems,
. INTRODUCTION complexes, systems-complexes. Configuratiois are

Any software development life cycle consists ofdifferent kinds of complex system’s polymorphism. The
distinct stages and involves various agents (managesiversal structurX contains alX, , and in this case it is

software developers, users, etc.) and technologies, suchg,i5q0us to notion of set of all subsets or categoryl of a

mathematical modeling, information ~representationne gyhcategories. The connections between compositions
modeling, information processing and visualization, usey represented by means of mapping

interfaces. At the very beginning the problem state .) "

represents an ideal object, which is specified during th njorphlsm):ij. X - X The composition conn.ected
stages as various linguistic, mathematical and informatiovith morphisms (represented a category in the
models. At the stages of implementation the models af@athematical sense) form a complex. The comparison of
represented as algorithms and data structures, which dhe two compositions X, andx K

realized as program objects and components. At the .| - shows the dissimilarity between
testing and deployment stages the software is used tﬁ? WX = XA X W ISsimiiarty betw

testers and users. In the general case new ideas drifl composition anéth one. For example, I8¢, X, be

problems affect the life cycle at any stage. For etam (ifferent UML models of software before and after adding

new requirements are analyzed on the basis of thenew structure, spX; reflects a complex of the current
obtained experience and new software life cycle is)

constructed; new implementation technology impliefievelopment step. IfX;, X, are two UML models of
reconstruction (translation) of the source code irgwo n different software systems, thexX_ fixes, in particular,
language and corresponding data structures adaptation; the. o b .

user's suggestions of the user interface modification&€ir structural dissimilarity, andr is a comparison

imply data structure and source code reconstruction. relation. The structurenX; is also a composition and

Various combinations of stages form a number of lifdoelongs to the set of all the comparisaiXs. The setF
cycle schemes, such as waterfall and spiral models, ‘Vis a set of all possible mappirig]s.
model, agile and extreme approaches, iterative and
incremental development, and various improvement There are also a reference set of compatisdhis the
models [1]. All the approaches use models of variouiterval [0, 1], which is a metric linearly ordered induet
degrees of abstraction and formalization. We consider @ntinuous bounded above and below set of points. The
general case of life cycle as a process of adaptefinew one-to-one correspondence of compositions and reference
ideas, requirements and specifications implieset points is denoted by relation.(), for example,
modification of all the models (formalized and implied). | . | means that each poit turns into itself;X o |
Thus, the software development process is representedmgans that any composition from s¥t is one-to-one
propagation of the modifications. corresponded to a definite point of the interval [0, 1]. In

The problem we consider in the paper is to construépﬁ latter gastﬁ 'Z.f? bur;qltg r(;‘ébran?n) basis otX » N
an approach to describe the process of the modificatidffne" Words the differentiatiorX onto compositions Is

conducted by means of comparing them with pointgorrespond to pointsi, =0,i,,

aig=1 (for each
(numbers) from the interval [0, 1].

i <i,.,.k=01..9) of theinterval [0, 1].

The axioms of complex systems' theory are to compare))))
compositions and their connection functions with an The idea X, is explaned by means of its
identification index of an order and together. terminological basis of formalization, and referemdo

DX ol 2F ol 3) AX, o F,. (1) the software domain and problem stated. The referen

could be an existing ontology or a textual repregam

The axioms 1 and 2 transfer all the order properties &f the problem. The dissimilarityAX,, denotes the
the setl to the sets of all compositioxs O X , their additional information at_)ogt requirements to thitvere
comparisonaX. 0 X , and mappings. O F . This also under development. This is a result of the probserd
oo i R i o domain decomposition. As, one can understand as
implies that all the combinations are toposes, i.e/ #1€ |DEF) model extended with formal or informal

from | . By means ofl the structures, their comparisons(?‘&'pecmcaltlon of its structural elements. The m@phF,

and mappings are one-to-one connected to each other. 1S @ creative function done by system analyst under
X E o AX o restriction of some technique, e.g., SADT [3].

))) The dissimilarity AX,, denotes the result of system
This emphasize a necessary moment of complexin

the complexes, their comparisons and mappings a esigner’s activityF,, of conversion IDEFO model with
equivalent (identical in the sense of dialectiogids), and the requirements into set of UML diagrams. AK
have the single identification index in. The complexes have their corresponding interpretations.

are self developing systems, where each alteristioased)))))
on its structure AX ~ X. Complexes are static Theory's axiomatic basis here is realized as fatow

formations, the transitional states with partisfitymed - Axiom 1 in (1) denotes, that any software system

connections cannot be related to them. can be considered (modeled) at various
Complexes are linear sequences of morphisms abstraction levels denoted By, and the inverse

(categories) direction means, that for any set of models the

bundle basid could be constructed;

o K Xy e Ko - Axiom 2 means that it is possible to develop

the contained compositions form homologous serfes o software as model transformations and
comparison, as each composition has a measure Ifrom refinements, as well as having developed a sound
this series is also homotopic. Homologo- homotegites in some sense software, then it has sound model
form comparisons and mappings. All the elementthef set representation (formalized or just implied);
series are functionally similar, that's why theynche - Axiom 3 for each model specialization or
considered as series of analogs. transformation a set of methods (techniques,

Any fragment of a homological series. .. X is a tools) to carry out the development could be

y g. 9 % - X _ found or developed, as well as methods and

complex, which corresponds to a complex of comparis instrumental software used to develop software by
of the dissimilarities AX; - AX,. Consequently, a means transformation of corresponding models.

similarity of the structure implies similarity of
modifications and vice-versa. Therefore, observed,,
similarity in the structure must be caused by sirities of
the processes and their models. The search ofistlic
and dynamical similarity is the main subject of theory
of complexes.

The interpretation of the identity)X . AX means

t the process of software development is baseitso
structure, AX results from testing and exploitation, and
the software development is an improvement of gief
the models. The complex in this example also form a
homologous (homotopic, analog) series, in otherdajor
o) one can make advantage of the same steps as arlgn e
A. Application to Software Life Cycle project using the same set of mod&lsto develop new

In the field of software development the theoryldou software.

be implemented in various aspects. If we choose the
reference setl as detail level of software model
representation, then O could mean a completelyaadbst

level (ust an idea), and 1 denotes completelyizedl Model Driven Architecture (MDA) [4] and formal

software complex. Further,X; will correspond to methods [5]. The approaches are aimed at automeaftion
informational models of various abstraction. Faaregle, creative activity of designers and programmers and
X, is the original ideaX, is a textual representation of implemented in instrumental software. The software
the requirementsx,, is an UML model, ..., and at the dévelopment tools having a model at input genesate

. . . model or source code, which also we consider agdeim
end of the interval, e.g.X, is a completely realized \joqt of the transformations are formal and dedagtie
software system. The configuratioks, X,,...,X MDA approach requires a Platform Model and a séenar

to specify a variant of the transformation.

There are various approaches to automatic
transformation of the models in the field of softeva
development, such as IBM Rational Unified Process,

9

A translation of the properties of the theory ofclass of templates, e.g., fixing some parameter or
complexes to the processes of MDA-transformationsubstructure.

results in following conclusions. I . .
The modification propagation process is based on a

- In developing software any stateXof including number of document models. Secretaries will fill in
AX should be stored for later usage indocuments as HTML forms and edit the generated
transformation instances in a WYSIWIG HTML editor. HTML is widely

- The stored results of the transformations shoul sed and support necessary level of the notaréaldent
be analyzed to extract new knowledge about th epresentation. There are many useful methods MLHT
transformation specific of the current task anogeneratlon and modifications. The difference betwee
also general templates about designing software ocuments of various versions is to be propagatether

"models. Such models represent the document layalit a
- ComplexAX is of especial interest and subject ofpresentation (CSS), structure of the document ¢laisat
analysis. Namely, as transformation, - X parts should be presented in the document and ichwh
o ! order), structure of the form of the template, dix@ata
corresponds to the dissimilaritiesX; — AX;, sgructures stored in a rational database, and sdtua
then the instrumental software should correct alstructural models are based on corresponding @iédlo
the models inX as soon as SOMEX; has been e.g., ontology of structure elements of a document,
fixed by a developer. ontology for expression individuals’ data, etc.

Lo : The system should control the process of the docime
Thus, it is of purpose to construct instrumental, . = >7= : . e L
software based on analysis of analogy and propegefi q?sugnln_g in a dialog with user, chu!nng the &daal
the modificationsAX . information on user’s intention and acting in caemce.
Complex problems are described by users as tekts fo
B. AnE le Proi programmers, who implements new features of the
- An Example Project software after confirmation of the requirements.
To investigate the possibiliies of the software
development approach we started a pilot project of m
notarial office automation. The task selected anstaged _ ' _])
as the deve]opment of the software is deep|y dmbnd Since 2001 OMG exp'OltS Model Drlve_n Architecture
users’ desire to change: creating instances ofrdents, (MDA) of software development. MDA [4] is a parttble
correct errors, forming new document classes, ceingo Mmodel considered in the section 1.A. MDA exploftsee
new document workflows, as well as refinement @rus levels of abstractions to represent software: GIW) and

interface aimed at raising the office productivity.

From the functional point of view the notarial offiis The Computation Independent Model (CIM) reflects
primarily an organization for document preparationsoftware’s external requirements — its interfac®tM
storage, and retrieval; tracking of the individeaffata is hides structural elements, and can be used fonelefi
the secondary aim that allows producing the doctimePecifications and checking requirements.

more agile. There exist four user roles in theceffithey The software designing technique of MDA is based on
are "secretary’, who fills in the templates, “teapl mtistage transformation of Platform Independerndi
modifier’, who is an experienced user allowed top\)into a number of Platform Specific Models (@S
construct forms and describe new regular strucforesd p\ is a model of the software reflecting most loé t
in documents, ~“programmer”, who understandssryctural and some semantic aspects of the seftveat
information modeling and implements the routiné$eas e model contains no information about impleménat
program modules, and “notary’, who validates ammisi of the structures on the target program architectUML
the documents. As usual the roles define the set @i|ass Diagram extended with some tag values and
activities and responsibilities for correspondiisgrs. additional stereotypes is an example of PIM. The
During the exploitation of the information system extension allows one to denote implementation Huts
secretaries gain experience, and can evolve inlagep structures. PSM is a model, which can be implendease
modifiers. Shifting a user from first role to anetitan be source code of the subsystems, e.g., it couldpeysical
done as a result of his/her qualification assessriére structure of a rational database, which is directly
assessment can be performed by notary and programntdeductively or by means of code templates) traedla
or by means of testing, for example, answeringteose into DDL SQL-requests.

tests and/or doing test exercises. The transformation of the PIM into PSMs is carried

Each instantiation of a template can be consideseai Out under control of a Platform Model (PM) and a
copying a document in the storage and its refithwiew transformation scenario. PM contains informatiord an
data or even just an edition of the copy. Modifwatof ~ algorithms of PIM's structure analysis and generatf
the second kind can be interpreted in several vigstly, ~ corresponding structures in PSMs. Sometimes PSM is
as mentioned before, it is just refil of the temtpl understood as specified variant of PIM. The tagiesl
Secondly, it is a template body text error coroectr a and stereotypes are used to direct the transfmmafia
further improvement of the document. Thirdly, theStructure into desired frame.

modification could touch the form structure givirge a PMs in most of commercial MDA systems have been
new template of existing kind (class), or form eaenew implemented on the basis of algorithmic approadteyT

IMPLEMENTATION TECHNOLOGIES

are not far from CASE systems translating UML ddags homology should overcome the disadvantages, and it
into a source code by various plug-ins. The magaidf means, in particular, that the instrumentation vk
MDA is to allow developer to modify PM according should support the transformation in both direcion

his/her preferences and task properties. Our expmFi

shows that usage of present logical languages &fsl P IV. SOURCES OFMIODIFICATIONS

based on formalized knowledge [6] allows us tockffee

transformation in an efficient way by means of djiag a When a MDA tool generates a source code, the
rule set content. problem appears when the generated code was nubdifie

by a programmer. The modification can be easily los
We use [6] a logical approach to implementhecause of likely following regeneration. One @ thiays
transformation. The source PIM is represented as-XMto conserve modifications is to represent the geadr
file version 1.2. As it is a variant of XML, theldiis software framework as a library and allow programsme
parsed by means of libxml XML parsers into a tfEge to inherit the code. Changing sources is usefuhime of
tree encapsulated inside a LogTalk module, whiclrogrammer can more comfortable figure out theembrr
processes queries to PIM structure. The transf@mat data types and names the entities “in place”, ades

procedures and PM is represented as set of LogTafifocedures to improve performance.

modules connected with messages. Each module ental _ . .

a knowledge base to recognize an aspect in theaRti Controlling changes in source code can be realized
its derivate structures. The results of recognitiom new through using version control systems that cariefftly
facts about PSM. The transformation scenario ista scompare the source code versions, and throughagngl

(sequence) of the leave modules, which generateesou COmpilers, which could be aware of the PSM and PIM
code and other data structures. existence. In the simplest case the difference hef t

] versions is stored as a patch; the patch reappdield time

Thus, the generated PSM is represented as settsf faafter the source code regeneration; conflicts eselved

consisting of the subset describing the origina,Pl interactively by programmer. Another way is to gmal

which is obtained while querying the XML tree, d@h@ both versions of the source code as parsing ttaes,

subset describing the |mplementat|on_ aspects _of théifference propagated into a PSMs’ and PIM’s versio
software under development. The resulting sourde ® The propagation should be made under programmer’s

generated by leave modules by means of templaéses supervision: programmer must supply the information
templates play the similar role as CSS in welgpteésents the meaning of the difference.

PSM as texts of source codes. _
To support the propagation on the level of the cour

Main advantages of MDA usage in the softwarecode one can take advantages of the literate pringirey
development are as follows: tools and data formats, which can be thought af asy
1. Design stage independence of the implementatioﬁf hypertext markup of the source code generaeah fr
platform; capability to replace the platform SMs. Literate programming is a way of source code
without redesigning PIM. construction, where the programmer mixes a task
description and the task solution — the program the
2. Formal definition of PM: programmers’ same source text file or a tree structure. Therpmgs
knowledge is represented as rules and algorithmsalso constructed from structural parts. The ligerat
programming transformational tools analyze the c®ur
ructure and generate source code tagged as|zessa
comments of the generated program to recondtnact
original structure in case of generated source fication.
MDA is a great approach and successfully used idome literate programming tools can generate aewhol
development complex software, but it has significanproject from one tree (see for example Leo editdrgnd
disadvantage, which we are to overcome: track some source code modifications.

3. Raising the automation level of the life cycle:
early stage modifications (design stages) are Iesistf
expensive to implement in PSMs.

1. Using the MDA in simple projects usually extends In MDA case the source structure is a PIM,
time of software construction, although obtainedransformation modules include data about original
formal PIM and PM models when analyzed couldstructure of the PIM as tags into comments of the
be used in other projects; generated source code. These tags are semantis ofark

the source code intervals. In this case the diff@ef the

2. Currently MDA is of litle use in already <o 0o codes can be directly associated to thetwstal
constructed and implemented systems analement of the source model

systems based on stored data manipulation, e.g.,

existing informational systems, as modification of The theory of complex systems states WAt . X.
information data model results in databasdn our case this means, that the structures forntbeels
structure modification like adaptation to new datarepresentation can be used to represent the naitfis,
structures; also the algorithms of transformations of the medszin

be used to transform of the modifications. The
modifications can be represented in the similar way
patch files as groups <removed substructure/cordext
The support of the above mentioned propagation ofmoval, added substructure>.

dissimilarities AX; and modeling whole life cycle’s

3. Modification of PIM and source code is ignored
by the procedures of transformations.

Another way of obtaining new information for modelsinterface will result in the new set of modificat®related

is the texts related to the software domain. Netions

to layout of the widgets, grouping the common

could be extracted by means of text analysis of newomponents, and fine adjustment of the behavidhef

requirements, as the texts are based on the diaddye)
terminological basis, allowing human beings

understand each other. Texts contain artifactseméing
informational structures of the software, e.g., plte
word sequences denoting concrete user interfackatar

widgets.

to

CONCLUSION
Software development life cycle has been considered

structures. There are approaches constructing Form@S Subject of the theory of complex systems and
taxonomies (ontologies) from analysis of appearancePmPplexes [2]implying that the software developtigm
frequency of terms, see, e.g., [8]. The requirementiatural process. The life cycle is represented/siers of
contain both new restriction and new terms, whicHnodels and morphisms between them. Analysis of the

possible be a new classes or instances. Two versibn
the ontology compared and the difference - newonsti
and classes shifting in the hierarchy - will refle new

requirements.

Let us briefly consider a technique [8] for texabysis
and thesaurus extraction. The technique's inpaitsst of
texts and output is a thesaurus, where for allgdesubset
of the source text set corresponding to the term
associated. The technique consists of four steps:

theory's properties realization in the model shottrat
the present instrumental software productivity dobé
extended by means of developing techniques forysisal
of the passed life cycle stages, analysis and getioa of
modification of the models.

In the last section of the paper we considered some
existing sources of modifications in the framewardk
iModel Driven Architecture (MDA) and software
utilization, for example, joining the code generatstage
of MDA and compilation stage of programming langeiag

1. Construction of the stemmed word index of theallow one to propagate modification of previously

texts' set.

2. Form a terminological basis as a set of terms; t
terms are represented as a sequence of adjac

stemmed words.

3. Hierarchical clustering of the text set, where the
texts are described in the space of frequencies o

the terms (the sequences) appearance.

generated source code to the abstract models of the

heoftware; extraction formal taxonomy from analysfs

fextual representations of users’ requirementslagl of
concurrent versioning systems [9] allows one tarfgout
new notions from new requirements.

¢ For some tasks appearing in the paper a variatiieof
solution is presented as a methods or informational
technology. The problem of the software development

4. Association of the cluster nodes to the terms, alistory analysis is not considered and is a subjéct
semantic value of the node, thus, forming &urther investigation, as well as implementation tioé

thesaurus.

Textual representation also used by programme

using revision control systems to describe workeddine

description can be considered as a text block of
corresponding literate programming source codererhey)
are developer groups, which have agreements ointgg
text with special words (such as “UPD:”, “TODO:”,
“FEATURE:") to define modification semantics more [2]
formally. Analysis of the descriptions allows one t
connect ontological notions to source code comgsnen

and functions of the new structures to its impletzton.

The history of the development process is to beedto
in a revision control system. Its branching strrestwill
reflect the natural structure of the software dawelent
process. Comparing the branching structure witktiexj
formal taxonomies gives rise of relation of theegbj
classes to their implementation approaches. Oparteso
distributed concurrent versioning system Git [9% Inaost

powerful commit approach, which allows one to fix
branching model,

changes partially, and powerful
merging, pushing/pulling changes, and repositargiog.

User interfaces are also
modifications as they are parts of the softwarkecshg
all structures of the software projects. The mala of the

user interfaces in the software development process
us

adaptation to the software structures and
requirements. So, the allowing user to modify tlseru

the sources of thg

considered ideas as an open-source MDA software
r%evelopment tool.

REFERENCES
“Software development process Wikipedia, the free
encyclopedia”, access date - 03-aug-2011,

http://en.wikipedia.org/wiki/Software_developmentogess.

“Homology And Homoyopy in Geographic Systems”, Siiféc
editors: A. K. Cherkashin, E.A. Istomina. Novosi#iikirAcademic
Publishing House “GEO”, Novosibirsk, Russia, 20891 p. (in
Russian)

D. A. Marca, C. L. McGowan. “SADT: structured ansity and
design technique”. McGraw-Hill Book Co., Inc.: Ne¥ork, NY.
1988. 392 p.

D. S. Frankel. “Model Driven Architecture: ApplyingIDA to
Enterprise Computiig Wiley Publishing, USA, 331 p.

“Formal methods - Wikipedia, the free encycloped&cess date
— 03-aug-2011, http://en.wikipedia.org/wiki/Formalethods

E. A. Cherkashin, S. A. Ipatov. “Logical ApproachWML-model
processing of Informational Systems” J. Conterporar
Techologies. System Analysis. Modelling. 2009. K3). pp. 91—
97. (in Russian)

K. R. Edward, “Leo’s User Guide“, access date —a08-2011,
http://webpages.charter.net/edreamleo/leo_toc.html

I.V. Zakharova, A.V. Melnikov, J.A. Vokhmitsev “Aapproach to
automated ontology building in text analysis promgé.
Workshop on computer Science and Information Telduies
CSIT'2006, Karlsruhe, Germany, 2006. P.177-178.

(3]

[4]
(5]
(6]

(71

é?] Jon Loeliger. “Version Control with Git: Powerfulo®ls and

Techniques for Collaborative Software Developme@Reilly
Media Inc., USA, 2009. 313 p.

