
Basket Coach Board

Ladislav Ratgeber*
*Ratgeber Academy, Pecz, Hungary, ratgeber.laszlo@gmail.com

Abstract - Information technology development and its

integration in all aspects of our social and economic life did

not leave out the sports. Increasing professionalism and

competition cause clubs to approach all their activities in

more and more systematic way. Progress is especially visible

in training and analyzing opponents' teams and players, i.e.

scouting. Therefore a need arises for such a program

package that would enable better knowledge regarding

basketball tactics, action analyses and creation, review of

video actions and printing reports, i.e. documenting all

actions, results and remarks during the work. This program

is used by national team of Serbia when preparing the

games in all official and friendly matches. This paper

describes design and realization of program package for

analyzes, scouting and creating basketball actions. Graphic

objects comprising the editor with their own drawing

methods. To realize such editor it was necessary to realize a

number of auxiliary methods as bitmaps operation

(rotation, transparency, resizing, shrinking and widening by

certain factors), methods for manipulation and drawing the

actions (paths) assigned to players (drawing line with

particular dots, calculating distances in pixels between dots,

dividing lines in certain dots) as well as methods connected

to analytic geometry (distance between the dot and the line,

line crossing etc.). Basketball actions consist of phases with

their own methods of drawing and animation. Animation is

an iterative procedure where in every step, under certain

conditions (speed, delay) players are moving from spot to

spot obtained by "chopping up" the trajectory of the player.

I. INTRODUCTION

In team sports there is a number of methods to prepare
athletes for competitions. There are physical, technical,
tactical, psychological and integral ways of preparations.
Every one of those has its fundamental importance in
forming the athlete and the team, bringing to successful
performance at the game and to the good result. A good
and high quality scouting is unthinkable today without
modern information technologies. This especially goes for
the American football scouting. Every team has its so-
called "whisperer", a person who reads lips of an opponent
coach or player in order to anticipate next action.
Nevertheless, human factor is still most important in a
scouting. It doesn't matter whether scouts have read
opponents action properly; the player in the field is the
one to decide on last point, last good defense, and last
foul… Scouting in volleyball is also interesting, especially
in a way of its implementation. According to the best
Serbian coach of all times, Serbian national team became
European and World champion only when it modernized
its information technologies. In basketball, a special place
belongs to the “Advance scouting“, one of best scouting
programs in this field. It was first used by Chicago Bulls
and they were six-time NBA champions. They has great

individuals in their team, including probably the best NBA
player of all times Michael Jordan, they did not win a
single trophy until they introduced the “Advance
scouting“ program. This paper describes the scouting
program.. The project is modeled using UML
specification. In static aspect of the system, the Use Case
model and Class Diagram model were used, and for
dynamical aspect the Activity Diagram was used. Activity
diagram describes a process with its starting point (initial
point) for action or activity necessary to describe a job or
a function, and its final or ending point. By activity
diagram we describe a process, step by step, with all
conditions necessary for the next step, all the way to the
ending point. The Use Case diagram enables defining
primary elements of a system (participants, user) and the
functions he performs. In this way it is possible to format
a global picture of a system, which will be a foundation
for all future steps in realization. The Class Diagram is the
graphical description of a system comprising of classes, its
attributes, connections and relations between classes.
Class model helps more efficient implementation by clear
definition of system aspects. Since present operative
systems are highly interactive with the user, a natural
choice is the graphic action editor where working space
window will be the coach drawing board. Main advance
of such application over the drawing board is the
possibility to save action, print report with notes during
the presentation in front of players, ad well as saving
actions in a video format with possibility to play those
with various speeds. There are several types of editor in
market fulfilling these demands. Here is presented a
framework that may become universal for all graphic
editors of the type, for all team sports (soccer, basketball,
handball, etc.). This paper presents basketball action
editor, but with some minor changes this may become the
universal graphic action editor. Implementation is realized
in programming package Borland Builder 6 in
programming language C++. For creating a video, open
source API – OpenCV was used.

II. DESCRIPTION OF BASKET COACH BOARD

One of first steps in designing and modeling of a
presented problem is the analysis [1,2] and specification
of demands [3]. During the analyze process, it is
important to obtain answers to the following questions:

1. The basic purpose of program package that is being
implemented, i.e. essential demands of the user regarding
functioning of the system. The application is a graphic
editor, enabling the user to add elements on the working
space window, to adjust properties, to add actions to every
element. The diagrams also must be shown, as well as

their review by phases, and creating a video record and
printing the report.

2. Hardware demands of the program package

Some teams worldwide use PDA devices. They are
relatively small and easy to transport. Also they have
relative good memory and possibility of writing on top of
them.

On the basis of previous steps, it may be concluded
that there is a pattern for formation of graphic editor
model, as well as standards it must posses:

1. Application is MDI [4], i.e. enables working with
several documents (and diagrams)

2. Every document consists of two toolbars (one for
adding graphic elements on worktop and one with icons
for manipulating the phases, animation and operations
undo, redo and delete) and the worktop.

3 Before creating a new diagram, enable user to
choose in which field the basketball action will be created
(half field or whole field), which is the field orientation
(horizontal or vertical), how much host and guest players
the action will start, as well as graphic mode for depicting
layers at the worktop (type: circle, triangle, shirt, and
color)

4. Every graphic element has certain properties

a) Player: name, position, shirt number, size, angle
regarding field orientation, status (host, guest), and mode
of representation on the worktop. For every graphic
element it is possible to make corresponding notes.

b) Ball: size,

c) Action (path): comment, line width, speed and
delay of elements moving on the path,

d) Marker to mark part of the worktop.

5. Enable operations cut, copy, paste, delete, undo and
redo on graphic elements:

a) Enable user to adjust paths where animations and
pictures will be recorded, and to make adjustments for
working with diagrams: animation sped, whether paths
will be visible during playing the animation, player
positions, as well as adjustments of values for element size
on worktop – size of selection dots, b) Basketball action is
happening in stages. After adding actions to players,
moving to next stage is done by clicking the icon, and
before next stage present one is being animated. Players in
second and following stages are not able to move using
mouse, in order to provide logic consistency of the action,
c) Enable manipulation of stages, i.e. deleting and adding
stages, moving to next one, previous, first and last stage,
d) Enable animation of the action, i.e. showing animation
of active diagram

6) Basketball action may be saved in AVI or SWF file.
Enable playing these formats within the application.

7) Enable screen capture of active diagram

Generating two types of report: general – with user's
comments, and report of basketball action with

characteristic pictures of action, i.e. all stages and all
comments added by user.

Figure 1. Aplication in the moment of action creating

If there will be no overlapping, that is the distance
between players in next stage is less than set value, a
message is written on the screen that user must re-check
all connections assigned to players, so there would be no
overlapping. If everything is fine, will be no overlapping
on the screen. Afterwards the DeselectAll() method is
being called, to deselect all elements. Figure 2 shows
dialog for setting properties of the path. User clicks right
mouse button on the path and chooses item Line
Properties. Text entered by user is short commentary
about player's movements, for printing in reports. Width
parameter is thickness of the line by which a player is
moving, and parameters Speed and Delay determine speed
and delay of the player. In case of a referee and his
assigned path, user chooses in which direction the referee
will be moving and by which angle his view point is
moving (in fact, referee's moving is determined by the
path, and view point is determined by head movements
according to the Target Point parameter).

Figure 2. Dialog for setting properties of the path

The CalculateNewPosition method is being called,
returning the dot where the element will be moved. In the

end, calling the MoveTo method provides movement of
the object itself.When the element reaches the end, i.e.
when distance is equal to value of previousDistance
attribute, then finishedAnimation attribute obtains value
true and animation is being finished.When playing the
whole animation, a list of all stages is being checked
which is the attribute of TanimatedAction class and for
every stage an AnimatePhase() method is being called.

Fig. 3 and Fig. 4 are showing the process of creating a
basketball action.

Figure 3. Example of basketball action

Figure 4. Example of basketball action

III. PRINTING A REPORT

For printing reports, components of QuickReport are
being used. The basic component is QuickRep or the
report that is to be printed. For every information or a
group of data, there is a component SubDetail where data
are placed. In short, every SubDetail must have its parent
component, i.e. QuickRep component, and every

information must have SubDetail for a parent.
Components are created dynamically since report depends
on number of stages and the choice of the field. If user
chose half field for creating a basketball action, in report
four pictures are created in a same row, for every stage
separately (picture represents starting state of every stage).
Figures are obtained by calling createBitmapsForPrint()
method. This method places a whole worktop (for every
stage separately) into a list of pictures, which later will be
dynamically created at certain positions. Every stage has
Bitmap attribute, which is initial state of a stage. After
that, listing all comments given by user for graphic
comments is in order (if there are those). By clicking the
right mouse button and choosing item properties, the
following dialog is being opened.

Figure 5. The example of the report

IV. CONCLUSION

This paper presents the implementation process for
graphic editor for creating, editing, animation, and
creating video for basketball actions. Steps from modeling
to implementation are described. In every step, starting
from model of Use Case diagram, class diagram, to
dynamic aspect of a system, procedures are described that
enable defining implementation issues of such an editor in
a gradual and complete way. As it may be seen, this task
demanded from our team to implement knowledge not
only in modeling and coding, but also of the posts, its
tactic element, parameters important to coach in scouting
and tactical training of the player, and in adjusting user
interface to final user. Basketball actions comprise of
stages with their own methods of drawing and animation.
In solving animation problems and animate stages it was
necessary to learn how to handle lists of graphic objects,
lists of distinct dots, ad well as moving objects regarding
user's adjustments: speed and delay. Largest problem was
the way in which different speeds of players will be
realized. Methods had to be written establishing current
position of a player, his dots and on the given speed move
him to strictly designed place. Before animation it was
necessary to "divide" lines between distinct dots into more
dots by which player may move. This was necessary in
order to provide smooth animation, and speed problem
was solved by moving a player for several dots in one
iteration. This means that animation is iterative process,
where in every step under certain conditions (speed,

delay) players move from one spot to another, obtained by
„chopping up“ the path of the player. Possible
improvements in this segment may be better algorithms
for checking the lists or maybe a new data structure,
which will speed up object manipulation. Aim of
projecting and realization of such a problem is to enable
basketball coaches that, together with players, in an
interactive way, develop tactical skill for challenges
waiting for them. On the basis of previously said, we may
conclude that implementation of this kind of editor may be
broadened in order to fulfill demands of other team sports,
such as soccer, water polo or handball. Use Case model,
class diagram and state diagram, with some changes, may
become a pattern for creating specialized editors for these
sports.

REFERENCES

[1] Wiegers, Karl E. (2003). Software Requirements 2: Practical
techniques for gathering and managing requirements throughout
the product development cycle, 2nd ed., Redmond: Microsoft
Press. ISBN 0-7356-1879-8.

[2] "Chapter 2: Software Requirements", in Executive editors: Alain
Abran, James W. Moore; editors Pierre Bourque, Robert Dupuis:
Guide to the software engineering body of knowledge, 2004
Version, Los Alamitos, CA: IEEE Computer Society Press. ISBN
0-7695-2330-7. Retrieved on 2007-02-08. “It is widely
acknowledged within the software industry that software
engineering projects are critically vulnerable when these activities
are performed poorly.” . March 2005

[3] http://www.techwr-
l.com/techwhirl/magazine/writing/softwarerequirementspecs.html
#comment-170.

[4] http://en.wikipedia.org/wiki/Multiple_document_interface.

[5] A. Cockburn (2001). Writing Effective Use Cases. Addison-
Wesley Longman Publishing Co., Inc. ISBN 0-201-70225-8.

[6] Aurum A. Cox, K. and Jeffery. An experiment in inspecting the
quality of usecase descriptions. Journal of Research and Practice
in Information Technology, 36(4):211–229, 2004.

[7] E. B. Fernandez and J. C. Hawkins. Determining role rights from
use cases. In RBAC ’97: Proceedings of the second ACM
workshop on Role-based access control, pages 121–125, New
York, NY, USA, 1997. ACM Press

[8] R. Hurlbut. A survey of approaches for describing and formalizing
use-cases. Technical Report 97– 03, Department of Computer
Science, Illinois Institute of Technology, USA., 1997.

[9] The Unified Modeling Language User Guide (Addison-Wesley
Object Technology Series) Grady Booch, James Rumbaugh, Ivar
Jacobson , 1998. Chapter II, III

[10] Introduction to UML 2 State Machine Diagrams by Scott W.
Ambler

[11] Ball, R., Beck, J., DeMott R., Deneroff, H., Gerstein, D.,
Gladstone, F., Knott, T., Leal, A., Maestri, G., Mallory, M.,
Mayerson, M., McCracken, H., McGuire, D., Nagel, J., Pattern, F.,
Pointer, R., Webb, P., Robinson, C., Ryan, W., Scott, K., Snyder,
A. & Webb, G. (2004) Animation Art: From Pencil to Pixel, the
History of Cartoon, Anime & CGI. Fulhamm London.: Flame Tree
Publishing. ISBN 1-84451-140-5

[12] Solomon, Charles (1989). Enchanted Drawings: The History of
Animation. New York.: Random House, Inc. ISBN 0-394-54684-9

[13] http://opencvlibrary.sourceforge.net/

[14] http://en.wikipedia.org/wiki/Graphical_user_interface

[15] Sams Teach Yourself C++ in 21 Days (5th Edition) (Sams Teach
Yourself) by Jesse Liberty and Bradley L. Jones (2004) , Chapter
14

[16] Borland C++ Builder 6 Developer's Guide by Jarrod
Hollingworth, Bob Swart, Mark Cashman, Paul Gustavson

[17] Nicolai M. Josuttis. The C++ Standard Library: A Tutorial and
Reference. Addison-Wesley. ISBN 0-201-37926-0.

