
On the Test Driven Development in the Small
Development Teams

Aleksandar Bulajic*, Radoslav Stojic**
* IBM Denmark, Copenhagen, LANB@45.dk, aleksandar.bulajic.1145@fit.edu.rs

** Metropolitan University, Belgrade, Radoslav.stojic@fit.edu.rs

Abstract: While traditional testing methods are based on
testing of already existing code and functionality, First -Tests
approach, or Test Driven Development (TDD) approach writes
a test before implementation code is available. Small project
teams are introducing different kind of challenges and most
important are limited resources and time constraints. TDD
methodology offers better resources utilization, and claims that
quality is improved even a total time used for development is
shorter. Results of rresearch projects on TDD differ
significantly, what draws conclusion that involved IT
professionals skills and experience could be a crucial factor.
That what can be concluded is that TDD approach provides
better test coverage of implementation code and introduces
fewer software defects, and better software quality, than
software delivered by traditional approach. However, this
approach uses approximately more than 15% time for
development.

INTRODUCTION
The test-first concept has been introduced in the Extreme

Programming, an Agile development methodology created
by Kent Beck. Extreme Programming development method
originate from the experience that Kent Beck collected by
working as project manager 1996 on the Chrysler C3 project.
In 1999 he wrote a book “Extreme Programming Explained”,
where he presented this methodology that is combined from
already known best practice principles. This methodology
best fits to the small and mid-size teams.

Kent Beck is also known as designer of the automatic
unit test driving framework known as xUnit framework, or
today even better known as JUnit ,automatic unit test
framework, used by Java programmers or NUnit, automatic
unit test framework, used by .Microsoft, .NET programmers
(C# programmers for example).

In 2003 Addison-Wesley published another Kent Beck
book “Test Driven Development by Example”, that attracts
more attention to the test-first concept and replaced test-first
programming concept name by today widely used Test
Driven Development (TDD) name.

The basic idea behind the Test Driven Development is
developing a test before implementation of requirement. The
first Section, “Test Driven Development”, describes this
approach.

The next Section, ”TDD and a Small Development
Teams”, discuss benefits and drawbacks of using TDD
methodology, as well as pre-conditions and other tools that
automate development tasks and improves team productivity
and final product quality.

The Section “Conclusion” is a short discussion and
conclusion.

I. TEST DRIVEN DEVELOPMENT
Test Driven Development (TDD) rules defined by Kent

Beck are very simple:
1. Never write a single line of code unless you

have a failing automated test,

2. Eliminate duplications.

The first principle is fundamental for TDD approach
because this principle introduces technique where a
developer first writes a test and then implementation code.

Another important consequence of this rule is that test
development is driving implementation. Implemented
requirements are by default testable; otherwise, it will not be
possible to develop a test case.

Second principle is today called a Refactoring, or
improving a design of existing code. Refactoring also means
implementing a modular design, encapsulation, and loose
coupling, the most important principles of Object-Oriented
Design, by continues code reorganization and without
changing existing functionality.

A. Test Driven Development Work-flow
The following picture illustrates a Test Driven

Development process:

Picture 1: TDD workflow diagram

1) Requirement
Requirements in case of the Extreme Programming and

Agile development are managed differently than in a case of
the traditional approach, where can be used a lot of time and
huge communication overhead to specify requirements and
requirements relations and interactions. Extreme
programming splits development in the short iterations that
can last from one to three or four weeks. Each iteration
delivers fully functional software that adds new functionality
or improves existing.

A short iteration requires that requirements complexity is
reduced by dividing in the parts that can be completed in the
short development time. A short iteration requires also that
development starts very early, and there is no time to wait
that whole requirement specification is completed.

Even many Agile and Extreme Programming sites are
offering idealized pictures of the requirement management
based on the user stories, the time necessary to understand
requirement cannot be avoided. This means that even it is
possible to start development from the short user story,
communication overhead related to the understanding of the
requirement details cannot be avoid. The differences are in
the time used for specifying requirement and also in the
requirement size and complexity. TDD requires less time and
starts implementation as soon as some parts of requirements
are known

2) Write Automated Test
This is implementation of the first TDD rule:
Never write a single line of code unless you have a

failing automated test.

This means that before any line of the requirement
implementation code is written, an automated test code is
written. Automated test will fail because there is not existing
implementation code.

Writing an automated test is not a spontaneous process.
A test is chosen from a tests list that is already created during
brainstorm sessions. This list contains a list of tests that
“verifies requirement and describes the completion criteria”.
(Newkirk and Vorontsov 2004)

3) Execute Automated Test
Because implementation code is not yet written and there

is existing only empty implementation method to avoid
compiler errors, a test will always fail.

The automated testing tool is precondition to implement
TDD. All tests or particular test shall be possible to execute
automatically. This requirement is very important because
developing small tests, step by step, can suddenly end by a
test suite or test suites that contain hundreds of tests that
shall be executed each time when implementation code is
changed or new test is added to the test suite. This kind of
testing is called Regression Test and this is very important
step in the Quality Assurance process.

4) Write Implementation Code
If test fails then Write Implementation Code should

provide implementation code that makes a corresponding
test case to execute successfully. The TDD considers a
passing test not useful and unnecessary. New test shall
always fail and cause changes in the implementation code.
These changes can introduce writing of new implementation
code or changes in existing code.

5) Refactoring
“Although refactoring code has been done informally for

years, William Opdyke's 1992 Ph.D. dissertation[15] is the
first known paper to specifically examine refactoring,[16]
although all the theory and machinery have long been
available as program transformation systems.”
(Wikipedia_Code_Refactoring 2011)

Removing duplicate code today is better known as code
refactoring. Code refactoring has been widely popular in
recent years and very popular book written by Martin Fowler
book “Refactoring Improving the Design of Existing Code”
(Fowler 1999) still can be used as a reference book that
contains a long list of refactoring techniques.

There are available different definitions and all agree that
refactoring is improving design of existing code. Refactoring
does not add new functionality or change old one.
Refactoring eliminates duplicates, makes code more readable
and improves code internal structure.

6) When to Stop TDD Iterations
If all tests are green (successfully executed) then on the

Figure “Test Driven Development workflow diagram” are
available three paths::

1. Refactoring.

2. Write Automated Test,

3. Stop Further Development.

The first two are described in previous Sections.

The third possibility means that application development
is completed. Some authors are calling a Red, Green and
Refactor sequence a TDD pattern.

A decision to stop further development can be made
when all test cases from a test case list are implemented. This
means that all requirements are implemented and there is no
reason to use more time and resources.

II. TDD AND A SMALL DEVELOPMENT TEAMS
When IT professional hears about a small team, the first

association is a project size. And then come to his mind other
key words such as Agile development, Extreme
Programming (XP), SCRUM, Lean Methodology and cutting
development expenses too. The never-ending dream is to
create more by spending less money and time, and in the
same time improve quality of the final product.

A project size, is not decisive factor, even does not make
sense to create huge team to accomplish a small project.
Small in this case is measured by amount of money and
required resources. Today are huge project divided to the
small project teams where each team responsibility is
development of the particular component or even component
parts. That depends of the requirements and of the chosen
architecture, and project or component complexity. This
approach shifts complexity to the integration phase where
some or all components are assembled and created an
application.

A. Preconditions for Applying TDD
Clients and software companies hurry up to transform

requirements to the implementation and to see application
running, even it is already clear that requirements are
obscure as well as benefits of such implementation.

Too many times, clients and software companies are,
forgetting to implement proper Quality Assurance
procedures. Too often that is discovered when it is already
too late to correct it, without introducing delays and huge
expenses, because application software is already running in
production. Many times development is starting without a
proper test strategy, and even more often without sufficient
resources to test application properly from the very first
beginning.

Why? An answer is not easy to find. The most of
involved people would probably justify decisions by
expenses and available resources. Doing more by using less
becomes a motto that created many issues.

From managers point of view it is not an issue. It is just a
question how to force people to do more in the same amount
of time. All right, force is not very popular word. Motivation
is preferable word. And manager is not more manager, but
rather a coach. His main issue is motivating developers to
work hard and deliver perfect software for a fraction of time
that has been used yesterday? All right, perfect is too strong
word. No one is expecting perfect solution. Today a perfect

is replaced by good solution and even solution. Make
something that works and then improve it in next iteration, if
it is next iteration.

This philosophy is not in conflict by best practice.
Software development is an iterative process and new
iteration should deliver new functionality or improve
existing. Delivery speed and shorten time to market become
key words. Robustness and flexibility are also often used,
but question is could it fit very well in case when speed is
important and resources and time are very limited?

If you ask a question is it possible to deliver robust,
flexible and good quality software quickly, you will today
get a positive answer as quickly too. Agile development is an
answer and too many people really believe that it is a right
answer.

I would not say that it is not possible in a small project,
where requirements are well understand, and implementation
team works together for a while, and role and responsibilities
inside of the team are well known. In case of complex
projects that involves remote components, more layers,
complex interfaces and complex data model and business
logic, it is not possible. To make it possible, complex project
shall be first divided to a number of a small and middle sized
projects or components. But complexity in this case is
moved from implementation to integration and it can be very
irresponsible to expect that integration will be a piece of
cake and works smoothly. In case of complex projects
divided to small projects are involved too many people and
too many small teams and very often these teams are spread
all around a world or are a part of different organization or
cultural environment.

In the small teams, there are not available sufficient
resources for implementing proper QA, and resources for
testing purpose are very limited too. In these teams, it
becomes even more important to automate testing and ensure
that by introducing new functionality the old one is not
broken. This kind of testing is called Regression Testing.
Regression testing has to be automated otherwise even in the
less complex project it will not be possible manually execute
all old tests and check all test results. In case of Agile
development method and TDD, iterations are very short and
can take just a few weeks.

Productivity and effectiveness of the small development
team hardly depend of the available tools and frameworks,
and process automation. Important advantage of the small
development teams are fast communications. The huge
development team introduces huge communication
overhead. In the small teams, this communication overhead
is set to a minimum. Disadvantage is limited resources, so
the same team member has to execute more different roles,
for example he act as developer and write a code and in the
same time test application and write a test code. In this case
there are basically two approaches, one called classic
approach where implementation code is written first and
then written a number of test cases to test implementation
and TDD approach, where first is written a test case and then

implementation code In case of TDD the same person is
writing test case and implementation code.

Successful implementation of TDD methodology is
based on fulfillment of certain set of preconditions, and
availability of additional components and tools, and
frameworks for automate development process.

Preconditions can be summarized as:
1. Developers are able to act as testers

2. If there are testers available then testers should
be able to write a code and simple programs
(Beck 1996),

3. Project size is a small or middle-size project,

4. Requirements are known even it is not necessary
that are fully completed,

5. Developers are familiar by tools and
frameworks

Applying TDD in the small development teams cannot be
effective without tools that automate development process.
Without tools, applying this methodology would probably
create ineffective and cumbersome development
environment where benefits would be changed to pitfalls and
affect a quality of final product.

Requirement for automate development process are:

1. Development Framework and Automated test
framework that is able to execute test cases and
easily collaborate with development framework,

2. Automatic build procedures,

3. Continues integration,

4. Development and Test environments for each
developer – each developer should have own
development environment where is executed his
own test. When test and code are ready it is
merged to main project branch. Otherwise team
would introduce communication overhead to
find which changes corrupted test environment
and even more time to correct test cases.

In the small development teams time and resources are
always most critical factors. This shall be always considered
when existing framework or a tool want be replaced by new
one.

B. TDD and Standards and Practices
The TDD development approach, as well as any other

Agile development approach is based on short development
iterations. Iteration can last just a week or two and usually no
longer than 3-4 weeks. In the small development teams,
where developer and tester and QA manager is the same
person, it can be difficult to deliver good quality code on
both sides. Short time constraints are introducing additional
pressure on developers to deliver planned functionality and

developers many times forget that testing is a first priority
task too.

In such case it is important to have standards, procedures
and supervision that ensures that every development team
member respect and implement it. TDD promotes a Test-
First approach and forces developers to write a test first, and
then implementation code.

Continues refactoring and improving of code design
removes duplicates and enforces modular design. These are
two most important TDD premises

But how many test cases will be developed and how
existing code will be refactored depends of a particular
developer, project team or company where development
process is completed. If company has well described
procedures and implementation standards, as well as control
mechanisms, then delivered code quality will probably
satisfy quality requirements. If any of these not exists, or is a
partially implemented, code quality will be unknown, and
depend mostly of developer skills and experience, as well as
of his personal motivation.

Processes and method purpose is to become independent
from human beings behavior and even skills. Processes and
methods are designed to provide standard quality despite
differences in human beings skills and experiences. Of
course, that this is only a theory. In praxes, delivered quality
can depends of a person and his skills, and experiences and
his personal motivation.

Tools and frameworks are important part of each
development and good tools and frameworks can
significantly increase developer productivity and
effectiveness, as well as a quality of final product.

For TDD critical tool is automated testing framework. It
is a mandatory tool, and this tool should be able easy

integrate to an Integrated Development Environment
(IDE) framework. Today, this is not an issue, and on the
market are available different automated testing frameworks
known as xUnit family frameworks and these frameworks
are open sources and can be used free of charge. There are
also available different open-source IDEs where are
automated testing frameworks already integrated or can be
very easy integrated.

There are also available automatic build tools and
continues integration tools that are able to execute build
procedure in a predefined time intervals and execute
automated tests (Unit Tests) and report any errors to
developers by sending a mail notification.

A question is what is wrong and why delivered software
quality still vary and introduces number of defects that are
suppose to be discovered during development process?

An answer is that human beings are not machines and
cannot be programmed to repeat exactly the same task again
and again and keep motivation and hard work at highest
level every time and still be able to think creatively. Even
motivation is high, lack of knowledge and experience can

cause a software defect. Internal project organization,
procedures, applied standards and processes management
can be critical factor and affect significantly final product
quality.

Different organizations developed standards that are
specific to software products and customers often require
that software product meet particularly standards as for
example government organizations can require that software
product meet ISO 9000 or CMMI standards. The most
popular standards for software development are:

1. ISO 9000 standard family,

2. Capability Maturity Model Integration (CMMI),

3. IEEE 1298.

CMMI is very popular and many customers when
ordering a software project require that Software Company is
certified at least to CMMI level 3. The CMMI defines 5
different levels of maturity:

1. Level 1 Initial – poor process management,
quality and schedule unpredictable,

2. Level 2 Managed - established process
management based on experiences from
previous projects and is by nature reactive ,

3. Level 3 Defined – project defines processes
from existing standards and is able to track a
progress, ; by nature is proactive and product
quality is predictable,

4. Level 4 Quantitatively managed – processes are
measured and quality goals are established and
measured during project duration,,

5. Level 5 Optimized. – continues process
improvement based on evaluation and
measurements.

Each of these levels defines a set of documents and
procedures and processes that are applied during software
development process.

There is also important question what is testing purpose?
Verify that software functionality is working as expected or
try to break software and discover as many bugs as possible?
Test cases written by using TDD are in the first category and
usually further testing stops when all test cases are executed
successfully. The simplest reason is that further testing can
be expensive and reduce time for developing new features.

TDD is testing implementation code by using Unit Tests
and this kind of testing is a white box testing approach, what
means that tester, in this case the same person who
developed implementation code, knows very well internal
program structure. This is one of very often criticized TDD
approach, because quality assurance standards recommend
that developer and tester are different persons and that other
person than developer who write a code should test that code.

Unit testing is just one of the tests that should be
executed before software is deployed. There are also
Integration Tests, System Tests, non-functional tests, such as
stress and performance testing and also test of build
procedures and deployment procedures, and these are not a
part of the TDD..

Writing a test code, as well as writing implementation
code, is error prone, and it takes time to design a test and
write a code. Test case code can also contain errors and
wrongly report test results. This can be caused by changing
implementation code or even refactoring, as a side effect
kind of error. The worst case scenario is when test case
reports successful execution, but should fail. This can be
caused by hard-coded values, for example.

Test maintenance can be daunting and time consuming
tasks in case when hundred of tests should be corrected
because requirement or design has been changed. Separating
test case from test data in this case can help a lot and reduce
test maintenance time significantly.

Even test tools are open source, that can be used free of
charge, time to use it on the real IT project is not free and
customers or IT company shall pay for it. Time spend on
development of the test cases cannot be used on
development of application functionality. These two, even
close related processes, and even simultaneously executed,
are executed in the separate time frames. This means that
more time spent on test development is less time spent on
application functionality implementation, and opposite.

Small development team means also a small number of
human resources. A size of a small development team is
from 3 to 5 people in average and one is a Project or Team
Leader. If only one is dedicated to a test activity, it means in
average 25% percentage fewer resources that can be used for
other activities. If two of peoples are used only for testing
activities it means that 50% less resources are used for
development activities.

Another important precondition for successful testing
implementation in the small development teams is
availability of automatic testing tools. Even test development
can be done by using simple test editor, test execution shall
be automatic.

The simple reason is that manual testing, especially in
case of full regression testing, is not possible to execute and
successfully complete under time constraints that are defined
as milestones for each software application.

Even many would advocate that software quality
delivered by Agile development methodology, is better or
the same quality as a quality of software developed by using
traditional development methodology, I suggest to use
common sense and estimate your chances in advance.
Important parameters that should be considered are:

1. Project complexity,

2. Target platform (it is suppose that development
and deployment under Windows will be easier

than under Unix or, for example under
Mainframe computer),

3. Technology requirements (an old technology,
emerging technology, mature technology, etc.),

4. Available tools (collaboration, development,
build, continues integration tool, deployment
and testing tools, frameworks, automatic testing
tools, builds, deployment tools),

5. Team size,

6. Team competence (age, experience, are they
already know each other or it is first time they
work together)

7. Project management,(competence, experience,
knowledge related to project requirements,
knowledge and previous experience by using
Agile development methodology, available
procedures and methodologies, available tools).

8. Client (it is an old customer or brand new
customer, how much support you can expect
from such customer, competence of the people
assigned as contact persons, testers and
customer representatives),

9. Motivation of all above mentioned and
dedication to project success. End user
motivation and dedication can be crucial, but if
it is not at good level, project management and
project team has important task to increase it in
positive direction.

10. Available time and resources,

11. Education and career development possibilities.

Even a TDD approach can deliver better software quality,
it cannot be achieved only by using TDD, without
implementing quality assurance and standards and
procedures that ensures that TDD methodology is properly
implemented.

C. TDD Benefits and Drawbacks

Wikipedia (Wikipedia_TDD 2011) provides a list of
benefits and drawbacks that pretty well summarizes what
different authors present as TDD benefits. Following is a
short summary of benefits without long explanations
(Wikipedia_TDD 2011):

• Writing more tests,

• Debugging is rarely used because development is
using small steps and tests are developed before
implementation,

• TDD affects implementation code design,

• Implementation code is by definition testable,
because test is written before implementation,

• Even TDD requires more code to be written; total
development time (test and implementation) is
shorter,

• Automated test usually covers every code path,

• More modularized design and loose coupling,

• Number of defects is lower because of high number
of tests,

• Improved maintainability and further development.
Drawbacks of TDD are (Wikipedia_TDD 2011):

• TDD is difficult to use in case of User Inreface (UI)
testing, database or service testing. In these cases Unit
Tests are often replaced by Integration Tests,

• Management support is essential,

• There is not separation of duties, the same developer
is writing a test cases and implementation code. This
can affect both, test and implementation code
quality,

• Maintenance of tests cases overhead,

• Test coverage during initial development and any
next iteration can differ.

But to draw any conclusion about any kind of
methodology, it is necessary first to apply methodology on
real project and collect experience and then compare to
previous experience where is used another methodology.

III. CONLUSION
The first principle of TDD, “never write a single line of

code unless you have a failing automated test” is a
fundamental for TDD approach, because this principle
introduces technique where test is written before
implementation is available and is driving implementation,
and requirements are testable.

The second rule is requirement for continues code
refactoring. Eliminating duplication of code requires
continues source code inspection and changes that should
improve internal code design. Developer learns about code
internal structure and becomes confident to make changes. If
changes are necessary, than developer impact analysis and
estimations are in this case much more reliable.

Short development iterations discover requirements
misunderstandings very early and reduce expenses for
correcting these misunderstandings.

This approach raised very important question about final
software product quality, especially because a TDD
approach claims that total time used for development is
shorter. This means that cutting of development expenses
and shortening development time, would not affect final
software product quality.

Test-first approach leads to development of a small
portion of code and errors are discovered quickly without

using debugger. Implementations code has fewer defects
what means that more time can be used for development of
new features and functionalities.

Conclusion is that TDD approach provides better test
coverage of implementation code and introduces fewer
software defects, what means also that delivered software

has better quality, than software delivered by traditional
approach.

Claim that TDD approach is using the same amount or
less time for project development cannot be confirmed and
according to research papers TDD approach uses
approximately 15% more time for development

Claim that TDD improves internal software design and
makes further changes and maintenance easier cannot be
confirmed. It seems that design primary depends of
developer skills and experience, as well as of implementation
of best practice and internal standards.

REFERENCES
[1] Beck, Kent (1989), “Simple Smalltalk Testing: With Patterns”, available

at Internet (http://www.xprogramming.com/testfram.htm) (17-03-2011)
[2] Fowler, Martin (1999), “Refactoring Improving the Design of Existing

Code”, Addison-Wesley
[3] Hunt, Andrew, Thomas, David (2005), “The Pragmatic Programmer”,

Addison-Wesley
[4] Meszaros, Gerard (2007), “XUnit Test Patterns: Refactoring Test Code”,

Addison-Wesley
[5] Meszaros, Gerard , Bohnet, Ralph, Andrea, Jennitta (2003), “Agile

Regression Testing Using Record & Playback”, OOPSLA '03 Companion
of the 18th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications
(http://agileregressiontestpaper.gerardmeszaros.com/) (24-05-2011)

[6] Newkirk, James W., Vorontsov, Alexei A. (2004), ”Test-Driven
Development in Microsoft .NET”, Microsoft Press

[7] Wikipedia_Code_Refactoring (2011), “Code refactoring”, available at
Internet (http://en.wikipedia.org/wiki/Code_refactoring) (13-05-2011)

[8] Wikipedia_TDD (2011), “Test-driven development”, available at Internet
(http://en.wikipedia.org/wiki/Test-driven_development#cite_note-Beck-0)
(02-05-2011)

	INTRODUCTION
	I. TEST DRIVEN DEVELOPMENT
	A. Test Driven Development Work-flow

	II. TDD AND A SMALL DEVELOPMENT TEAMS
	A. Preconditions for Applying TDD
	B. TDD and Standards and Practices
	C. TDD Benefits and Drawbacks

	III. CONLUSION
	 REFERENCES

