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Abstract – Nowadays parallel programming is stepping up 
on the big door and slowly surpasses the traditional 
sequential programming model. The main idea here is to 
show how it can combine two parallel programming models 
in order to use effectively all available computing resources. 
Parallel programming models of interest here are MPI and 
CUDA. By combining both models we could use potentially 
all available processing resources. 

I. INTRODUCTION 

Modern computer systems consist of more and 
more parallel processing resources which is due to 
the latest achievements in computing technologies. 
On the other hand, to be able to use these parallel 
processing capabilities we need to imply a suitable 
programming model. Nowadays computing systems 
combine two main computation resources with 
significantly pronounced parallel computing 
capabilities. The main building component of every 
computer system is Central Processing Unit (CPU) 
which is low latency oriented while the other 
significant component represents Graphic Processing 
Units (GPU) which is throughput oriented and owns 
massive parallel processing capability.  

Trends in computing technologies will inevitably 
introduce high education Computer Science subjects 
that cover parallel computing and programming. The 
strength of the CPU is in the efficient low latency-
oriented design. They contain few cores and can 
handle few threads at a time. On the other hand, the 
recent GPU have high throughput-oriented design 
and are composed from thousands of cores that can 
handle execution of thousands of threads 
simultaneously. Combining MPI (Message Passing 
Interface) and CUDA (Compute Unified Device 
Architecture) programming models allows utilization 
of all available computation resources. Through the 
short guide we will show how it is possible to 
achieve that. Building the application which will 
combine those two programming models could 

ensure utilization of the whole computation 
resources available in one computer system. 
Knowledge about this issue only can help the 
students easily to step forward and to acquire new 
skills and learn new and highly demanded modern 
technologies. Modern multicore computer systems 
brought parallel computing to wide use general-
purpose PC, embedded system, game consoles, smart 
phones, smart TV etc. 

Because of the educational purpose of this paper 
we will focus on giving step by step guidelines for 
combining MPI and CUDA programming models by 
exploiting initial programming examples. 
Recommended prerequisites that are needed before 
starting to write combined MPI and CUDA 
programs are a knowledge of C/C++, knowledge of 
computer architectures and operating systems. It is 
not necessary to have knowledge of computer 
graphics or parallel programming. There are many 
factors for writing efficient programs that will help 
exploiting all computation resources. Here we will 
cover some basics without going deeper or showing 
optimizations techniques for writing efficient parallel 
programming code. 

Growing computing application demand naturally 
leads to change from traditional sequential 
computation to more promising parallel computing. 
To fill this gap there is a need for massive parallel 
processing capability units. Latest GPU have a 
highly parallel structure that makes them more 
effective for algorithms where processing of large 
blocks of data is done in parallel [1] [2]. With the 
passing of time GPU have surpassed the CPU in 
many ways. Improvements of the GPU go side by 
side with a growing range of applications from the 
traditional computation, signal processing, irregular 
computations to Machine Learning, Deep Learning, 
AI, Computer Vision, Supercomputing and more. It 
is very important for students to get familiar with 
GPU technologies. However, combining 
programming models that ensures usage of the whole 
available computation resources is of a completely 
different magnitude. 
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Various approaches and techniques exist for 
combining CPU and GPU resources. Most of the 
approaches are intended for computer cluster 
systems while others are for writing programs 
intended for heterogeneous platforms. These 
approaches can be separated into specific 
programming languages, API (Application 
Programming Interface) and frameworks [3]. There 
are also techniques for reclaiming lost performance 
and inefficient resources use. Some of them examine 
GPU utilization of individual kernels and design 
algorithmic techniques for maximizing resource 
utilization. Our intentions are to show a general 
method for utilizing simultaneously CPU and GPU 
resources and to achieve this MPI and CUDA 
programming models are used.  

The paper is organized as follows. The general 
principles of MPI and CUDA programming models 
are given in section 2. Section 3 is devoted to 
describing the possibility for combining both 
programming models in a single program. Initial 
programming examples and compile instructions are 
presented in section 4. A few conclusion sentences 
are given in the end.  

II. CPU AND GPU COMPUTING MODEL  

One of the main differences between CPU and 

GPU computing models is how they execute tasks. 

The CPU is optimized for sequential execution 

while the GPU can execute thousands of tasks 

simultaneously. 

A. CPU computing with MPI   

MPI is a portable message-passing standard API 
designed by a group of researchers from academia 
and industry and is intended for a wide variety of 
parallel architectures. It is a standard for data 
communication via messages between distributed 
processes and is often used in HPC (High 
Performance Computing) for building scale 
applications on computer clusters. There are several 
well tested and efficient implementations of MPI that 
are fully compatible with CUDA, CUDA Fortran, 
and OpenACC designed for parallel computing. 
There are several CUDA-aware MPI open source 
and commercial implementations and some of them 
are MVAPICH2, OpenMPI, CRAY MPI, IBM 
Platform MPI, SGI MPI. There are a bunch of 
reasons for writing MPI and CUDA combined 
parallel programming code. Depending on the 
hardware or the problem that needs to be solved, the 
reasons for using these parallel programming 
approaches may vary. This approach can be applied 
if there is a problem with very large data size that 
needs to fit in the memory of a single GPU. Another 

reason is enabling multi-GPU applications to scale 
across multiple nodes. Our reason is accelerating an 
existing sequential application in order to achieve 
more efficient use of all available computing 
resources. 

MPI standard defines syntax and semantics of 
library routines used for writing a wide range of 
portable message passing programs in C, C++, and 
Fortran. Other languages can also interface with such 
libraries. Parallel programs that use MPI can consist 
of separate processes, each with its own address 
space in which it is run. Each MPI process has its 
own rank and for the duration of the program 
execution there are fixed number of ranks executing 
the same program. It facilitates the use of SPMD 
(Single Program, Multiple Data) [4] programming 
model but it is not required, there are MPI 
implementations that allow multiple, different, 
executables to be started in the same MPI job. MPI 
process rank runs on a different core and own private 
memory and executes instructions at its own rate. 
The ranks can copy or move data between private 
memories via a shared interconnection. The 
communication can be performed by point-to-point 
(send/receive) which is communication between two 
processes, or by collective communication among 
the group of processes. In general, all ranks perform 
the same activity - compute or communicate at the 
same time.  It should be noted that ranks workloads 
are not well balanced. It is important to understand 
message passing. They are like email with a 
destination and message body, which can be empty. 
Communication is bidirectional and requires explicit 
sender and receiver participation. The messages 
provide two services as memory to memory copy 
across address spaces and 2-sided handshake 
synchronization. If multiple messages are sent to the 
same destination from the same rank, then the 
messages will be received in the same order. But if 
different ranks send messages to the same 
destination, the order of receipt is not defined across 
sources. For writing message passing programs a 
library called MPI is used. There are a few releases 
of this library and the first one MPI-1 is from 1994. 
The first release contains 125 routines and there are 
more than 430 routines in MPI-3. There are at least 
six routines needed for the most MPI programs: start, 
end, query MPI execution state, point-to-point 
message passing. The library has additional tools for 
launching the MPI program (mpirun) and daemon 
which moves the data across the network.  

B. GPU computing with CUDA 

CUDA is powerful parallel computing platform 
created by Nvidia and it allows software developers 
to use a CUDA-enabled GPU [5] for general purpose 
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computing. This platform allows developers to 
directly interact with the GPU resources and harness 
their power for writing efficient parallel programs. 
The GPU programs contain two parts, there is a 
control (sequential) part that is executed by a single 
CPU thread and there is a parallel GPU executed part 
that runs thousands threads in parallel on as many 
cores as possible at each moment. The CUDA 
platform is designed to work with programming 
languages such as C, C++ and Fortran. It also 
supports other computational interfaces such as 
OpenCL, OpenGL, C++ AMP, and the third-party 
wrappers are available for Python, Julia, MATLAB, 
etc. Through the years Nvidia developed different 
micro-architecture for the various GPU. Depending 
on the microarchitecture generally Nvidia GPU are 
organized in SM (Streaming Multiprocessor) with a 
set of registers cache for constants, texture cache, 
shared memory (L1 cache) and global memory. Each 
SM consists of a number of SP (Streaming 
Processor), and SFU (Special Function Unit) used 
for transcendental functions. Common name for SP 
is CUDA core. The SP contains several ALU 
(Arithmetic Logic Unit) and FPU (Floating Point 
Unit). Execution model used by the SM is SIMT 
(Single-Instruction Multiple-Threads) [6] which is 
similar to the SIMD (Single Instruction Multiple 
Data) by Flynn's taxonomy [7] of computer 
architectures classification. The communication 
between SM is performed through global memory. 

CUDA C is essentially a C/C++ programming 
language with extensions that allow executing of 
parallel functions on GPU. The CUDA source code 
consists of a mixture of conventional C/C++ host 
code and GPU device functions. There is CUDA C 
compiler nvcc that separates the parallel (device) 
functions from the code. According to this on the top 
level of the CUDA application there is a master 
process that runs on the CPU. This process is 

responsible for data flow between main memory and 
GPU memory. This process performs several tasks 
such as GPU initialization, allocation of main and 
GPU memory, moving data between main to GPU 
memory, launching of kernels (functions) on the 
GPU, fetching back processed data, deallocation of 
the memory and termination.  

III. BASIC PARALLEL PROGRAMMING STRATEGIES   

The common problem in parallel programming is 
balancing of the computational load among a set of 
parallel processing resources. It is especially 
important to use the appropriate parallel 
programming strategy. The choice of suitable 
parallel programming strategy highly depends on the 
problem itself. In this section two widely accepted 
parallel programming strategies will be presented. 
These programming strategies are suitable for task 
parallel programs with no communication between 
tasks. It is possible to have communications between 
the tasks. However, it is recommended to be 
infrequent to reduce negative consequences on 
efficiency. The two typical strategies will be 
explained here. The structure of the programs is 
simple and has several MPI processes that operate 
with the same GPU. If there are multiple GPU, the 
MPI process can handle all of them. It is widely 
known that this programming structure introduces 
contest switch overheads. The MPI process is 
handling the main memory while CUDA kernels 
update the GPU memory. 

In order to explain the building of a combined 
MPI and CUDA program step by step it is important 
to introduce the parallel programming strategies. On 
Fig. 1 is shown the general structure of processing 
flow together with the execution of the strategies. 

A. Basic Parallel Strategy Model 

The Basic Parallel Strategy Model is the first 
strategy shown on Fig.1 and is marked by 1. As it is 
implied by the name, this strategy has typical basic 
characteristics of a simple bound MPI and CUDA 
program. This strategy presents a simple solution for 
building MPI and CUDA programs. As it can be 
seen from Fig 1. all MPI processes run 
simultaneously and can start CUDA kernel function 
on the GPU. From Fig. 1 it can be noticed that there 
is circular execution on MPI – CUDA threads. It is 
important to have balanced work distribution 
through the MPI – CUDA threads. Balanced work 
distribution ensures efficient computation resource 
use and better computing performance. As already 
mentioned, there is a master process that runs on the 
CPU which is responsible for initialization, 
allocation and computation performing on GPU. In 

 
Figure 1.  Example of processing flow and execution strategy model 
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this case there are few MPI process instances that 
run on the CPU and they are responsible to ensure 
performance of all essential tasks simultaneously and 
independently. Because of the use of the same 
hardware resources there is an introduction of 
latency, resource contest, waiting, overheads and 
slower bandwidth. With the increase of the number 
of processes the negative effects get more 
pronounced. It is important to have balance between 
the number of processes and the scale of the 
problem. The efficiency of the parallel computation 
is directly connected to available hardware 
resources. 

B. Master-Workers Parallel Strategy Model   

Second strategy that will be described is the 
Master-Workers Parallel Strategy Model shown on 
Fig. 1 marked by 2. The effective solution by 
automatic dynamic load balancing is to define the 
single master process to manage collection of the 
tasks and collect the results. Then the set of process 
workers grab a task, compute the task, send the 
results back to the master and then grab the next 
task. This action proceeds until completion of all the 
tasks. The master process in this case is one MPI 
process that schedules computational tasks to other 
MPI worker processes. The worker process is 
behaving as a top-level process that maintains a 
CUDA instance. Any worker task is recommended 
to be with equal computing demand. This way it 
ensures efficiency and better computing 
performances. In this case the worker MPI processes 
run on the CPU and they are responsible for 
performing all essential tasks simultaneously and 
independently.  The same hardware resources are 
used as in the first strategy, but there is also an extra 
master process. Because of this there are negative 
consequences as input query, task waiting time, and 
not equal distribution of tasks between the workers. 
The negative consequences are more expressed with 

the increase of the number of the processes. There 
needs to be a balance between hardware resources, 
process number and the scale of the computing 
problem.  

IV. PARALLEL PROGRAM EXAMPLES   

This section presents parallel program examples. 
The platforms that are used for testing the examples 
are described in Table 1. Platform 1, a graphic card 
NVIDIA GeForce 150MX [8], has 384 cores running 
at 1.53 GHz and 48 (GB/sec) memory bandwidth. 
Platform 2, a graphic card NVIDIA TITAN X [9], 
has 3584 cores running at 1.41 GHz and 480 
(GB/sec) memory bandwidth. 

CUDA-aware OpenMPI implementation is used 
for building a single MPI + CUDA program on 
Ubuntu OS. Open MPI can handle multiple GPU 
cards but in our case, there is only one GPU. The 
GPU card is utilized and shared between several 
MPI processes. Tests are performed on two diff erent 
classes of parallel processing capability hardware 
(Table I). It is important computing hardware and 
software to be compatible, update and properly 
configured.  

A. Examples 

The examples represent simple MPI and CUDA 
programs that are built according to the parallel 
strategies presented in the previous section. Here the 
examples represent the basic program skeleton 
structure of the explained strategies. One way to 
build a single MPI+CUDA program is to put both 
code MPI and CUDA code in a single file. This 
program can be compiled using nvcc, which 
internally uses gcc/g++ to compile your C/C++ 
code, and linked to your MPI library. Another way 
is to have MPI and CUDA code separate in two 
files, main.c and example.cu respectively. 

The code from the first example is according to 
the Basic Parallel Strategy Model and contains the 
mentioned two files main.c and examples.cu. The 
main.c, containing the call to CUDA file, would 
look like: 

#include <mpi.h> 

#include <stdio.h> 

//Function declaration 

void call_kernel(...); 

 

int main(int argc, char *argv[]) { 

//variable declarations  

int myrank, nProcs; 

//Allocate memory 

... 

/* Initialize the MPI execution 

environment. */ 

TABLE I.  DESCRIPTION OF THE TEST PLATFORM 

Environment Platform 1 Platform 2 

CPU Intel i7-8565U, 1.80GHz 
Intel Xeon E5-2640, 

2.50GHz 

Memory 8 GB DDR4 2400 MHz 
48 GB DDR3 1333 

MHz 

GPU GeForce MX150 
Nvidia TITAN X 
(Pascal) 

OS Ubuntu 16.04 LTS 64-bit 
Ubuntu 18.04.3 

LTS 64-bit 

Compiler gcc 5.4.0 gcc 7.4.0 

CUDA 

compilation 
tools 

10.1 9.1 

GPU Driver V416.56 V430.50 

MPI (Open MPI) 1.10.2 (Open MPI) 3.3a2 
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MPI_Init(argc, argv); 

/* Get the number of MPI processes and 

the rank of this process. */ 

MPI_Comm_rank(MPI_COMM_WORLD,&myRank); 

MPI_Comm_size(MPI_COMM_WORLD,&nProcs); 

/* Call function 'call_kernel()' from 

CUDA file example.cu */ 

call_kernel(...); 

// Terminates MPI execution environment 

MPI_Finalize(); 

//Free memory 

... 

} 

In example.cu, the call_kernel() function is 
defined with the 'extern' keyword to make it 
accessible from main.c. The code it would look like: 

#include <cuda.h> 

#include <cuda_runtime.h> 

#include <stdio.h> 

//CUDA kernel 

__global__ void __kernel__(...) 

{ 

 ... // Do some work 

} 

extern "C" void call_kernel(...) 

{ 

//Load CPU data into GPU buffers 

__kernel__<<<BlocksPerGrid, 

ThreadsPerBlock >>>(...); 

//Transfer data from GPU to CPU 

//Free device memory 

} 

The second example is based on the Master-
Workers Parallel Strategy Model. It also consists of 
two files, main.c and example.cu. The main.c, 
containing the call to CUDA file, would look like: 

#include <mpi.h> 

#include <stdio.h> 

#define ROOT 0 

//message to processors 

#define END_MSG 1 

#define GET_TASK 2 

#define NEW_TASK 3 

#define NO_TASK 4 

#define DONE 5 

 

//Function declaration 

void call_kernel(...); 

 

int main(int argc, char **argv) { 

// Variable declarations   

int myRank, //id of current processor 

    nprocs; //number of processors 

int rc; // result from MPI operation 

int dummy = 1; // fictive variable 

... 

//Allocate memory 

... 

/* Initialize the MPI execution 

environment*/ 

MPI_Init(&argc, &argv);  

 

/* Get the number of MPI processes and 

the id rank of this process. */ 

MPI_Comm_size(MPI_COMM_WORLD,&nProcs); 

MPI_Comm_rank(MPI_COMM_WORLD,&myRank); 

// Status of a reception operation 

MPI_Status status;  
if(myRank == 0) // Root 

{ 

int hasWork = 15; // number of works

  

while(hasWork >= 0){ 

/* Wait message (dummy) from free 

processor (MPI_ANY_SOURCE)*/ 

rc= MPI_Recv(&dummy, 1, MPI_INT, 

MPI_ANY_SOURCE, GET_TASK, 

MPI_COMM_WORLD, &status); 

// Master send work  

rc = MPI_Send(&hasWork, 1, MPI_INT, 

status.MPI_SOURCE, NEW_TASK, 

MPI_COMM_WORLD); 

hasWork--; //Decrement work variable 

} 

/* When while quit this means that no 

more works and Root send message DONE 

to all free processors */ 

int k; 

for(k = 0; k < nprocs-1; k++) { 

dummy = -100; 

rc = MPI_Recv(&dummy, 1, MPI_INT, 

MPI_ANY_SOURCE, GET_TASK, 

MPI_COMM_WORLD, &status);   

rc = MPI_Send(&dummy, 1, MPI_INT, 

status.MPI_SOURCE, DONE, 

MPI_COMM_WORLD);        

} } 

if(myRank != 0)// all other processors 

{ 

//Must have end case, else not to work 

while(1) { 

int work, other; 

dummy = myRank; 

/* send to Root (0), that I am free, 

and want some work */ 

rc = MPI_Send(&dummy, 1, MPI_INT, 0, 

GET_TASK, MPI_COMM_WORLD); 

//receive work from Root (int work) 

rc = MPI_Recv(&work, 1, MPI_INT, 0, 

MPI_ANY_TAG, MPI_COMM_WORLD, &status); 

// quit while 

if(status.MPI_TAG == DONE){ 

break;                   

}  

// Do some work from process 

if(status.MPI_TAG == NEW_TASK) { 

/* Call function 'call_kernel()' from 

CUDA file example.cu */ 
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call_kernel(...);                      

} } } 

// Terminates MPI execution environment 
MPI_Finalize(); 

} 

The example.cu, contains the same code as Basic 
Parallel Strategy Model where call_kernel() is 
defined with the 'extern' keyword to make it 
accessible from main.c. 

B. Compile procedure   

The described below way of building 
MPI+CUDA programs contains two files. These two 
files can be compiled using mpicc, and nvcc 
respectively into object files (.o) and combined into a 
single executable file using mpicc. Using mpicc 
means that the CUDA library must be linked.  

The program can be build/executed in Debug and 
Release mode. Making object files, linking, building, 
and executing the programs were performed by using 
Ubuntu terminal and suitable commands. The 
compile instructions for build and execute in Debug 
mode, would look like: 

mpicc -c main.c -o main.o 

nvcc -c example.cu -o example.o 

mpicc main.o example.o -lcudart -L 

/usr/local/cuda-10.0/lib64/ -lstdc++ -o 

mpicuda 

It is necessary to carefully link the CUDA library. 
In the example above is shown linking the CUDA 
library executed on Platform 1 (see Table I). 
Compile instruction that look like: 

mpiexec -n <numprocs> <program> 

is one way to start <program> with the name of 
the program with an initial MPI_COMM_WORLD 
whose group contains <numprocs> number of 
processes. Example for request two processes to test 
the program would look like: 

mpiexec -np 2 ./mpicuda 

The compile instructions with additional 
optimization and customize options [10] [11] [12] 
for build and execute in Release mode, would look 
like: 

mpicc -O3 -Wall -c -fmessage-length=0 -

MMD -MP -MF"main.d" -MT"main.d" -o 

"main.o" "main.c" 

nvcc -O3 --compile --relocatable-

device-code=false -gencode 

arch=compute_50,code=compute_50 -

gencode arch=compute_50,code=sm_50 -

D_FORCE_INLINES -x cu -o  "example.o" 

"example.cu" 

mpicc main.o example.o -lcudart -L 

/usr/local/cuda-10.1/lib64/ -lstdc++ -o 

mpicuda 

The compile instruction for executing the by 
request two processes to test the program would 
look like: 

mpiexec -np 2 ./mpicuda 

If there is a cluster with multiple CPU and GPU 
it can call different execution configuration. For 
example, it can request two processes and two GPUs 
to test the program by using PBS (Portable Batch 
System) script. Another way to execute the program 
on more than one GPU is expressly use of CUDA 
call cudaSetDevice(number) to set the current GPU, 
where number is GPU card ID (identifier).  

V. CONCLUSIONS 

In this paper, a short guideline is given for 
combining the two parallel programming 
approaches of MPI and CUDA. There is brief 
clarification of both parallel programming models. 
Through the two parallel programming strategies 
our intention is to get parallel programming closer 
to the students. In the last section the program 
skeleton of an example is shown. This example can 
be a starting point for building complex program 
structure. In the end of the section is shown how to 
compile and run the combined MPI and CUDA 
program.  
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