
International Conference on Information Technology and Development of Education – ITRO 2020

October, 2020. Zrenjanin, Republic of Serbia

Software Reengineering with Object-Oriented

n-Tier Architecture: Case of Desktop-to-Web

Transformation

*A. Stojkov, **Lj. Kazi and ***M. Blažić

University of Novi Sad, Technical Faculty “Mihajlo Pupin”, Zrenjanin, Republic of Serbia
sahskica.s@gmail.com, ljubica.kazi@gmail.com, markoblazic93@gmail.com

Abstract – This paper presents the problem of software

reengineering based on object – oriented principles and the

use of web services. The theoretical part describes the

concept of object-oriented programming which provides

such that application architecture that it can be later

expanded, maintained, or modified without changing the

core of the application. Prototype of application, built on the

principles of object - oriented programming, was

reengineered in terms of switching from one platform to

another.

I. INTRODUCTION

Software systems need to be reengineered for

several different reasons: business process changes,

changes in requirements and policies, modernization

of technological infrastructure, change of

legislation, as well as because of difficulties during

maintenance in large software systems.

Aim of this paper is to present a case study of

reengineering that use object-oriented principles to

transform desktop application into web version. The

example shows possibility to have the application

core functions implemented with class libraries and

the front-end platform shift (from desktop to web)

was therefore easy to implement.

The rest of the paper is organized with sections as

follows: Theoretical background in software

reengineering, object-oriented programming and

SOLID principles, Literature review, Research

methodology, Research results – case study and

conclusion.

II. THEORETICAL BACKGROUND

A. Software Reengineering

Reengineering is process in software

development that includes improvements of existing

solutions for better maintenance support,

performance improvements, architectural change,

technology platforms adaptations etc. During the

software reengineering process, system is being

reconstructed into a new form.

Reengineering includes sub-processes (Figure 1):

reverse engineering, code reconstruction, data

reconstruction, forward engineering, inventory

analysis, document reconstruction. [1]

Figure 1. Software reengineering steps [1]

One of software systems types that, after a long

period of use, undergo reengineering, are legacy

systems. They could be defined as usually large

software systems with great importance [1, 2]

Legacy system is an old software program in use,

still satisfying user needs, despite the fact that there

are newer technologies or more efficient methods

for performing the task. Their usage is closely

related to procedures and terminology that were

used for many years and reengineering of such

systems is a complex task, not only because of the

large number of software functions, but also because

of the domain knowledge needed to be understood.

Therefore, new developers sometimes have

difficulties to understand the system. The large

organizations continue using such systems because

there are crucial for the business. [3]

The goal must be set in software reengineering

and understanding of existing program is crucial. It

is beneficial to implement the concept of software

reuse within the reengineering, where having

reusable modules (such as class libraries) could

mailto:sahskica.s@gmail.com

International Conference on Information Technology and Development of Education – ITRO 2020

October, 2020. Zrenjanin, Republic of Serbia

speed-up the process. With high quality

components, software reuse can simplify the code

and make it reliable. [4]

Reengineering can include use of documentation

for reconstructing and reorganizing the existing

system, as well as reverse engineering to acquire

models and sources suitable for reconstruction. The

overall functionality of the system does not need to

be changed, usually only the system architecture is

changed. Reengineering means renewal, it is the

process of transforming the old system into a new

system, but it also could include addition of new

functionalities. Special concern, during

reengineering is to create such a software that will

have components ready for future reuse and better

maintenance. Regarding the reengineering model:

each reengineering starts, if possible, with the

source code of the existing application and the target

goals of what is desired achieve. At this stage, the

existing system can be translated into a new one by

switching from one programming language to

another, from one operating system to another, or

from one platform to another. [5]

B. Object-oriented programing

OOP is programming model based on object

concepts which are used in real life. Objects contain

data in form of attributes and code in form of

methods. Computer program constructed in this way

have classes. Objects are instances of classes. [6]

There are four basic principles supported object –

oriented programming languages:

 Abstraction - using an abstract class / interface

shows the purpose of the class, not its

implementation. An abstract class has one or

more abstract class members. An abstract class

member is one that is not implemented, it has

only a declaration, not a body.

 Encapsulation is a concept that defines class

protection. The information in the class is

protected from direct access and the only way to

change it is through defining methods.

Encapsulation is achieved by dividing class

members into public, private and protected. [7]

 Inheritance – one defined class (super-class) can

transfer its data and functionality to a new one

(sub-class). It inherits all public/protected

members of the class and introduces its new

specific fields and methods. In this way, a

hierarchical hereditary line is created. [7, 8, 9,

10]

 Polymorphism is a property that the same

method works differently, depending on the

context, i.e. type of objects. It is made possible

with the ability of a subclass to redefine the

inherited method. [7, 9, 10, 11]

C. SOLID principles

SOLID is acronym for five principles of design

of object-oriented code. It doesn’t teach developers

how to create programs, but it helps them to create

better written code. [19]

 Single Responsibility Principle - one class or

module should be responsible for one part of the

functionality provided by the software, and that

responsibility should be fully supported in the

class. [20]

 Open/closed principles - Software entities

(classes, modules, functions, etc.) should be open

for extension but closed for modification. This

means that modules should be written in that

way that they can be expanded without the need

to modify them - to be able to change what the

module does, without changing the source code.

[21]

 The Liskov Substitution Principle - extends the

Open/Close principle. The focus is on behavior

of super classes and their derived types. Objects

in the program should be interchangeable with

examples of their subtypes without changing the

correctness of that program. [12]

 Interface segregation principle - The goal of the

principle is to reduce the side effects and

frequency of change requests by splitting the

software into several independent parts. This is

only feasible if an interface is defined that

corresponds to a specific client or task. [13]

 Dependency Inversion Principle - abstraction

does not depend on details, but details depend on

abstraction. In other words, the same level of

abstraction that is at a given level should be

used. Interfaces may depend on other interfaces

and no concrete classes should be added in the

signature method of an interface. [14]

III. LITERATURE REVIEW

When it comes to software reengineering, there are

many examples of applying its principles in

practice. Almost every company that is successful in

the field of programming has at least one legacy

system that needs reengineering.

“When software is developed over a long period

of time, it is often very difficult and expensive to

follow all standards all the time. Therefore,

reengineering is performed, which improves the

functionality and efficiency as well as the

sustainability of the code. Existing applications can

be adapted to improve their own functionality, user

interface, while taking full advantage of the current

International Conference on Information Technology and Development of Education – ITRO 2020

October, 2020. Zrenjanin, Republic of Serbia

technology. This way results in applications

becoming more reliable, efficient and easier to use,

and all initial client investments remain fully

preserved.” [15]

A. Transforming desktop applications to web

applications

Internet is becoming a platform on which people

work, communicate, share and collaborate, with

using mobile applications, web applications and

even desktop applications. The largest Internet

browsers such as Google and Yahoo support the

gradual replacement of desktop applications with a

new brand of web-based applications. Although this

is a justified approach and there are some successful

applications that have changed the platform (email,

bookmark…) using today's web technologies to re-

create sophisticated desktop applications is very

difficult. Newly created web-based office

applications come with significant limitations. They

may be fun and convenient, but they are far from

efficient, flexible, and productive as desktop

applications with well-established databases. On the

other hand, web applications offer many advantages,

enable data sharing, wide access, low risk of data

loss and most importantly cooperation. [16] There

are many other examples of applying the principle

of software reengineering in practice. Almost every

company that is successful in the field of

programming owns at least one legacy system that

needs reengineering.

Vasyl Soloshchuk, SEO developer of

INSART - Fintech Engineering described on its

linkedIn profile successfully completed software

reengineering projects. Online marketing platform

has a history of more than ten years become very

complicated to update and new requests indicated

that it should be executed complete reengineering.

With the help of the latest technologies, a new

system architecture has been created that improves

performance. It also avoids all errors found in

legacy system and new functionalities are added to

it. The result was a system which has become

scalable and very easy to update. [17]

NASA has a whole complex of legacy

systems that are becoming very expensive for

maintenance and reengineering is one of the

processes that can modernize these systems. In order

to maintain the systems later, at the lowest cost,

modern principles of software engineering are used.

A branch dealing with software technologies in the

NASA / Johnson Space Center has been involved in

development and testing for reengineering methods

and tools for several years within several large

projects. One of them is ROSE (Reusable Object

Software Environment) project that represents

reengineering FORTRAN in object - oriented C ++.

[18] Reengineering is a combination of reverse

engineering, followed by advanced engineering into

a new modernized software system (Figure 2).

Three levels of reengineering are presented:

translation, redesign and complete reengineering.

[18] On the ROSE project, reverse reengineering

was used for recovery of the FORTRAN design.

Several CASE tools were used, such as data and

structure analysis tools, complex metric tools,

restructuring tools... The forward engineering part

of this process used Object Modeling Techniques,

Object Oriented Analysis Development Methods

and design. [18]

Figure 2. Software reengineering through process on ROSE project [18]

IV. RESEARCH METHODOLOGY

The research presented in this paper was

conducted in year 2019. The subject of research is to

theoretically and empirically explore the possibility

of applying the basic principles of object-oriented

programming (encapsulation, inheritance, and

polymorphism) and SOLID principles when

creating a new software version, i.e. software

reengineering. Research hypothesis is formulated in

the sense of proving the possibility of application of

OOP and SOLID principles in aim to enable

transformation of desktop to web application with

particular concerns on structural quality of

programming code.

Two types of research were conducted in this

paper - theoretical and empirical. Theoretical

research was supposed to answer the question of the

principles of object - oriented programming used in

implementation of the software to make it suitable

for later eventual change of platform while

preserving the functional core of the application.

Empirical research is based on prototyping a

multilayer desktop application and transforming into

web application. Within this development, a new

version of the software is in focus, with transition

International Conference on Information Technology and Development of Education – ITRO 2020

October, 2020. Zrenjanin, Republic of Serbia

from one platform to another (desktop application to

web application) while preserving the functional

core of the application. The essence of using OOP

principles is to use the same classes from middle

tiers, to build a web version of the application.

A. Description of the business context

The application business domain chosen to

illustrate the concepts from the title of this paper is

recording data about university teaching staff. Data

about new teaching staff are entered into a database,

and the type of teaching staff is checked. Depending

on the type some data are enabled or prohibited. In

this case, there are two types teaching staff: Teacher

(professor) and Associate. If an associate is

concerned, application enables only general data

entry, while in professor case additional data are

required to be entered.

B. Aim and description of the used technologies

The aim of the practical part of this paper is to

show the object - oriented principles in creating

software for later reengineering in order to move

from one platform to another with the change of

technologies for creating a user interface (desktop

and web).

Tools / Development environments used for

implementation examples are: MS SQL

Management Studio and MS SQL Server, Visual

Studio 2019, as well as Sybase Power Designer. The

languages are SQL for database generation, C# for

application creation and UML for model creation.

V. RESEARCH RESULTS – CASE STUDY

The application consists of four parts: database,

web service, user interface and the program code

which is the core of the application. All of these

parts are physically separated, but through

references they work together. As the desktop

application is created as an object-oriented n-tier

application and each part is independent,

reengineering was quite simple. It was only front-

end, i.e. new user interface that was created, but it

was attached to existing components. These two

examples (desktop and web applications) use the

same crucial parts. The component diagram Figure 3

presents the component diagram, which shows the

whole solution.

Figure 3. Component diagram

In Deployment diagram, since there are two

versions of the application, desktop and web

applications that are based on the same core, there is

no significant difference in the layout diagram. The

only difference is that with a desktop application

(Figure 4), the software runs directly on the client

computer, and the web application (Figure 4) is

running on web server and presented with web

browser.

Figure 4. Deployment model for desktop application

Figure 5. Deployment model for web application

International Conference on Information Technology and Development of Education – ITRO 2020

October, 2020. Zrenjanin, Republic of Serbia

For the purpose of this work, two prototypes of the

application were made, one is a desktop version

(Figure 6) and another web version (Figure 7) of the

same application. Both applications implement the

same functions. They allow the entry of teaching

staff. Anyone can enter first and last name, work

position, and depending on that, other fields are

opened. If the position is "Teacher", it is possible to

choose the title and scientific field. If he is an

associate, there is no possibility of further data

entry. The entered data can be stored in the database

or the action can be canceled.

Figure 6. Desktop application user interface

Figure 7. Web aplication user interface

VI. CONCLUSION

The most common reengineering is the

reengineering of outdated software that has a good

function but due to their technologies are no longer

subject to change and are expensive to maintain.

Reengineering helps to retain their core functions

and support business processes.

Aim of this research is to explore the role of

object-oriented programming principles in

efficiency of reengineering. During the theoretical

research and related work analysis, it has been

proved that object-oriented programming and use of

SOLID principles, as well as n-tier architecture

helps in more efficient software reengineering.

Therefore, hypothesis was proved. Another proof

for hypothesis has been obtained with the

implemented practical example – case study.

During the practical development of the

application prototype, the principles described

theoretically were included and it was concluded

that such an application is possible, which, once

again, proves the hypothesis. The application is

organized through layers, to make the transition

from platform to platform easier. It is built so that it

has a user interface independent and all methods are

inherited from other classes. Classes are divided by

function, according to what they do and through the

references included in the system. The database is

also independent and can be easily changed at any

time. Such an organization has proven successful in

transitioning with desktop to web version of a

software.

REFERENCES

[1]https://www.geeksforgeeks.org/software-engineering-re-engineering/

[2] L. Tahvildari, Quality-Driven Object-Oriented Re-engineering

Framework, 2003

[3] P. Tripathy, K. Naik, Software Evolution and Maintenance, Wiley
2015

[4] R. J. Leach, Software reuse: Methods, Models and Costs, 2011

[5] H. Singh, Software Reengineering: New Approach to Software
Development, International Journal Of Research In Education

Methodology, 2012.

[6] https://www.geeksforgeeks.org/differences-between-procedural-and-
objectoriented-programming/

[7] https://radmiladrakulic.wordpress.com/2017/09/27/osnovni-principi-

objektnoorijentisanog-programiranja/
[8] https://www.upwork.com/hiring/development/object-oriented-

programming/

[9] https://cubes.edu.rs/sr/30/obuke-i-kursevi/sta-je-objektno-
orijentisanoprogramiranje

[10] https://medium.com/@cancerian0684/what-are-four-basic-

principles-of-objectoriented-programming-645af8b43727

[11] https://medium.com/from-the-scratch/oop-everything-you-need-to-

knowabout-object-oriented-programming-aee3c18e281b
[12] https://codeburst.io/the-liskov-substitution-principle-5ba387055a2a

[13] https://stackify.com/interface-segregation-principle/

[14] https://williamdurand.fr/2013/07/30/from-stupid-to-solid-
code/#prematureoptimization

[15] P. Kaur Chahal, A.Singh, Software Reuse and Reengineering: With

A Case Study, International Journal of Soft Computing and
Engineering (IJSCE), 2014.

[16] H. Shen; Z. Yang; C. Sun, Collaborative Web Computing: From

Desktops to
Webtops, IEEE Distributed Systems Online, 2007

[17] V. Soloshchuk, Three Examples of Successful Software

Reengineering Implementation, linkedIn, 2016
https://www.linkedin.com/pulse/software-reengineering-

successfulimplementation-vasiliy-soloshchuk-1/

[18] C. Pitman, D. Braley, E. Fridge, A. Plumb, M. Izygon, B. Mears,
Reengineering Legacy Software to Object – Oriented Systems, NASA

[19] G. Kumar Arora, SOLID principles, Syncfusion, 2016.

[20] J. Ocampo, J. Meridth, Pablo's SOLID
[21] Software Development, LosTechies.com, 2009

R.C. Martin, Design Principles and Design Patterns, 2000

https://www.geeksforgeeks.org/differences-between-procedural-and-objectoriented-programming/
https://www.geeksforgeeks.org/differences-between-procedural-and-objectoriented-programming/
https://www.upwork.com/hiring/development/object-oriented-programming/
https://www.upwork.com/hiring/development/object-oriented-programming/
https://medium.com/from-the-scratch/oop-everything-you-need-to-knowabout-object-oriented-programming-aee3c18e281b
https://medium.com/from-the-scratch/oop-everything-you-need-to-knowabout-object-oriented-programming-aee3c18e281b
https://williamdurand.fr/2013/07/30/from-stupid-to-solid-code/#prematureoptimization
https://williamdurand.fr/2013/07/30/from-stupid-to-solid-code/#prematureoptimization

