
International Conference on Information Technology and Development of Education – ITRO 2020

October, 2020. Zrenjanin, Republic of Serbia

Parallel programming with CUDA and MPI

D. Bikov*, M. Pashinska ** and N. Stojkovikj*

* Faculty of computer science, “Goce Delcev” University, Stip, Republic of Macedonia

** Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Veliko Tarnovo, Bulgaria

dusan.bikov@ugd.edu.mk, mariqpashinska@math.bas.bg, natasa.stojkovik@ugd.edu.mk

Abstract – Nowadays parallel programming is stepping up
on the big door and slowly surpasses the traditional
sequential programming model. The main idea here is to
show how it can combine two parallel programming models
in order to use effectively all available computing resources.
Parallel programming models of interest here are MPI and
CUDA. By combining both models we could use potentially
all available processing resources.

I. INTRODUCTION

Modern computer systems consist of more and
more parallel processing resources which is due to
the latest achievements in computing technologies.
On the other hand, to be able to use these parallel
processing capabilities we need to imply a suitable
programming model. Nowadays computing systems
combine two main computation resources with
significantly pronounced parallel computing
capabilities. The main building component of every
computer system is Central Processing Unit (CPU)
which is low latency oriented while the other
significant component represents Graphic Processing
Units (GPU) which is throughput oriented and owns
massive parallel processing capability.

Trends in computing technologies will inevitably
introduce high education Computer Science subjects
that cover parallel computing and programming. The
strength of the CPU is in the efficient low latency-
oriented design. They contain few cores and can
handle few threads at a time. On the other hand, the
recent GPU have high throughput-oriented design
and are composed from thousands of cores that can
handle execution of thousands of threads
simultaneously. Combining MPI (Message Passing
Interface) and CUDA (Compute Unified Device
Architecture) programming models allows utilization
of all available computation resources. Through the
short guide we will show how it is possible to
achieve that. Building the application which will
combine those two programming models could

ensure utilization of the whole computation
resources available in one computer system.
Knowledge about this issue only can help the
students easily to step forward and to acquire new
skills and learn new and highly demanded modern
technologies. Modern multicore computer systems
brought parallel computing to wide use general-
purpose PC, embedded system, game consoles, smart
phones, smart TV etc.

Because of the educational purpose of this paper
we will focus on giving step by step guidelines for
combining MPI and CUDA programming models by
exploiting initial programming examples.
Recommended prerequisites that are needed before
starting to write combined MPI and CUDA
programs are a knowledge of C/C++, knowledge of
computer architectures and operating systems. It is
not necessary to have knowledge of computer
graphics or parallel programming. There are many
factors for writing efficient programs that will help
exploiting all computation resources. Here we will
cover some basics without going deeper or showing
optimizations techniques for writing efficient parallel
programming code.

Growing computing application demand naturally
leads to change from traditional sequential
computation to more promising parallel computing.
To fill this gap there is a need for massive parallel
processing capability units. Latest GPU have a
highly parallel structure that makes them more
effective for algorithms where processing of large
blocks of data is done in parallel [1] [2]. With the
passing of time GPU have surpassed the CPU in
many ways. Improvements of the GPU go side by
side with a growing range of applications from the
traditional computation, signal processing, irregular
computations to Machine Learning, Deep Learning,
AI, Computer Vision, Supercomputing and more. It
is very important for students to get familiar with
GPU technologies. However, combining
programming models that ensures usage of the whole
available computation resources is of a completely
different magnitude.

1The research of the first author was supported by Bulgarian
Science Fund under Contract DN-02-2/13.12.2016.

2The research of the second author was supported, in part, by the
Bulgarian Ministry of Education and Science by Grant No. DO1-

221/03.12.2018 for NCHDC, a part of the Bulgarian National Roadmap

on RIs.

International Conference on Information Technology and Development of Education – ITRO 2020

October, 2020. Zrenjanin, Republic of Serbia

Various approaches and techniques exist for
combining CPU and GPU resources. Most of the
approaches are intended for computer cluster
systems while others are for writing programs
intended for heterogeneous platforms. These
approaches can be separated into specific
programming languages, API (Application
Programming Interface) and frameworks [3]. There
are also techniques for reclaiming lost performance
and inefficient resources use. Some of them examine
GPU utilization of individual kernels and design
algorithmic techniques for maximizing resource
utilization. Our intentions are to show a general
method for utilizing simultaneously CPU and GPU
resources and to achieve this MPI and CUDA
programming models are used.

The paper is organized as follows. The general
principles of MPI and CUDA programming models
are given in section 2. Section 3 is devoted to
describing the possibility for combining both
programming models in a single program. Initial
programming examples and compile instructions are
presented in section 4. A few conclusion sentences
are given in the end.

II. CPU AND GPU COMPUTING MODEL

One of the main differences between CPU and

GPU computing models is how they execute tasks.

The CPU is optimized for sequential execution

while the GPU can execute thousands of tasks

simultaneously.

A. CPU computing with MPI

MPI is a portable message-passing standard API
designed by a group of researchers from academia
and industry and is intended for a wide variety of
parallel architectures. It is a standard for data
communication via messages between distributed
processes and is often used in HPC (High
Performance Computing) for building scale
applications on computer clusters. There are several
well tested and efficient implementations of MPI that
are fully compatible with CUDA, CUDA Fortran,
and OpenACC designed for parallel computing.
There are several CUDA-aware MPI open source
and commercial implementations and some of them
are MVAPICH2, OpenMPI, CRAY MPI, IBM
Platform MPI, SGI MPI. There are a bunch of
reasons for writing MPI and CUDA combined
parallel programming code. Depending on the
hardware or the problem that needs to be solved, the
reasons for using these parallel programming
approaches may vary. This approach can be applied
if there is a problem with very large data size that
needs to fit in the memory of a single GPU. Another

reason is enabling multi-GPU applications to scale
across multiple nodes. Our reason is accelerating an
existing sequential application in order to achieve
more efficient use of all available computing
resources.

MPI standard defines syntax and semantics of
library routines used for writing a wide range of
portable message passing programs in C, C++, and
Fortran. Other languages can also interface with such
libraries. Parallel programs that use MPI can consist
of separate processes, each with its own address
space in which it is run. Each MPI process has its
own rank and for the duration of the program
execution there are fixed number of ranks executing
the same program. It facilitates the use of SPMD
(Single Program, Multiple Data) [4] programming
model but it is not required, there are MPI
implementations that allow multiple, different,
executables to be started in the same MPI job. MPI
process rank runs on a different core and own private
memory and executes instructions at its own rate.
The ranks can copy or move data between private
memories via a shared interconnection. The
communication can be performed by point-to-point
(send/receive) which is communication between two
processes, or by collective communication among
the group of processes. In general, all ranks perform
the same activity - compute or communicate at the
same time. It should be noted that ranks workloads
are not well balanced. It is important to understand
message passing. They are like email with a
destination and message body, which can be empty.
Communication is bidirectional and requires explicit
sender and receiver participation. The messages
provide two services as memory to memory copy
across address spaces and 2-sided handshake
synchronization. If multiple messages are sent to the
same destination from the same rank, then the
messages will be received in the same order. But if
different ranks send messages to the same
destination, the order of receipt is not defined across
sources. For writing message passing programs a
library called MPI is used. There are a few releases
of this library and the first one MPI-1 is from 1994.
The first release contains 125 routines and there are
more than 430 routines in MPI-3. There are at least
six routines needed for the most MPI programs: start,
end, query MPI execution state, point-to-point
message passing. The library has additional tools for
launching the MPI program (mpirun) and daemon
which moves the data across the network.

B. GPU computing with CUDA

CUDA is powerful parallel computing platform
created by Nvidia and it allows software developers
to use a CUDA-enabled GPU [5] for general purpose

International Conference on Information Technology and Development of Education – ITRO 2020

October, 2020. Zrenjanin, Republic of Serbia

computing. This platform allows developers to
directly interact with the GPU resources and harness
their power for writing efficient parallel programs.
The GPU programs contain two parts, there is a
control (sequential) part that is executed by a single
CPU thread and there is a parallel GPU executed part
that runs thousands threads in parallel on as many
cores as possible at each moment. The CUDA
platform is designed to work with programming
languages such as C, C++ and Fortran. It also
supports other computational interfaces such as
OpenCL, OpenGL, C++ AMP, and the third-party
wrappers are available for Python, Julia, MATLAB,
etc. Through the years Nvidia developed different
micro-architecture for the various GPU. Depending
on the microarchitecture generally Nvidia GPU are
organized in SM (Streaming Multiprocessor) with a
set of registers cache for constants, texture cache,
shared memory (L1 cache) and global memory. Each
SM consists of a number of SP (Streaming
Processor), and SFU (Special Function Unit) used
for transcendental functions. Common name for SP
is CUDA core. The SP contains several ALU
(Arithmetic Logic Unit) and FPU (Floating Point
Unit). Execution model used by the SM is SIMT
(Single-Instruction Multiple-Threads) [6] which is
similar to the SIMD (Single Instruction Multiple
Data) by Flynn's taxonomy [7] of computer
architectures classification. The communication
between SM is performed through global memory.

CUDA C is essentially a C/C++ programming
language with extensions that allow executing of
parallel functions on GPU. The CUDA source code
consists of a mixture of conventional C/C++ host
code and GPU device functions. There is CUDA C
compiler nvcc that separates the parallel (device)
functions from the code. According to this on the top
level of the CUDA application there is a master
process that runs on the CPU. This process is

responsible for data flow between main memory and
GPU memory. This process performs several tasks
such as GPU initialization, allocation of main and
GPU memory, moving data between main to GPU
memory, launching of kernels (functions) on the
GPU, fetching back processed data, deallocation of
the memory and termination.

III. BASIC PARALLEL PROGRAMMING STRATEGIES

The common problem in parallel programming is
balancing of the computational load among a set of
parallel processing resources. It is especially
important to use the appropriate parallel
programming strategy. The choice of suitable
parallel programming strategy highly depends on the
problem itself. In this section two widely accepted
parallel programming strategies will be presented.
These programming strategies are suitable for task
parallel programs with no communication between
tasks. It is possible to have communications between
the tasks. However, it is recommended to be
infrequent to reduce negative consequences on
efficiency. The two typical strategies will be
explained here. The structure of the programs is
simple and has several MPI processes that operate
with the same GPU. If there are multiple GPU, the
MPI process can handle all of them. It is widely
known that this programming structure introduces
contest switch overheads. The MPI process is
handling the main memory while CUDA kernels
update the GPU memory.

In order to explain the building of a combined
MPI and CUDA program step by step it is important
to introduce the parallel programming strategies. On
Fig. 1 is shown the general structure of processing
flow together with the execution of the strategies.

A. Basic Parallel Strategy Model

The Basic Parallel Strategy Model is the first
strategy shown on Fig.1 and is marked by 1. As it is
implied by the name, this strategy has typical basic
characteristics of a simple bound MPI and CUDA
program. This strategy presents a simple solution for
building MPI and CUDA programs. As it can be
seen from Fig 1. all MPI processes run
simultaneously and can start CUDA kernel function
on the GPU. From Fig. 1 it can be noticed that there
is circular execution on MPI – CUDA threads. It is
important to have balanced work distribution
through the MPI – CUDA threads. Balanced work
distribution ensures efficient computation resource
use and better computing performance. As already
mentioned, there is a master process that runs on the
CPU which is responsible for initialization,
allocation and computation performing on GPU. In

Figure 1. Example of processing flow and execution strategy model

International Conference on Information Technology and Development of Education – ITRO 2020

October, 2020. Zrenjanin, Republic of Serbia

this case there are few MPI process instances that
run on the CPU and they are responsible to ensure
performance of all essential tasks simultaneously and
independently. Because of the use of the same
hardware resources there is an introduction of
latency, resource contest, waiting, overheads and
slower bandwidth. With the increase of the number
of processes the negative effects get more
pronounced. It is important to have balance between
the number of processes and the scale of the
problem. The efficiency of the parallel computation
is directly connected to available hardware
resources.

B. Master-Workers Parallel Strategy Model

Second strategy that will be described is the
Master-Workers Parallel Strategy Model shown on
Fig. 1 marked by 2. The effective solution by
automatic dynamic load balancing is to define the
single master process to manage collection of the
tasks and collect the results. Then the set of process
workers grab a task, compute the task, send the
results back to the master and then grab the next
task. This action proceeds until completion of all the
tasks. The master process in this case is one MPI
process that schedules computational tasks to other
MPI worker processes. The worker process is
behaving as a top-level process that maintains a
CUDA instance. Any worker task is recommended
to be with equal computing demand. This way it
ensures efficiency and better computing
performances. In this case the worker MPI processes
run on the CPU and they are responsible for
performing all essential tasks simultaneously and
independently. The same hardware resources are
used as in the first strategy, but there is also an extra
master process. Because of this there are negative
consequences as input query, task waiting time, and
not equal distribution of tasks between the workers.
The negative consequences are more expressed with

the increase of the number of the processes. There
needs to be a balance between hardware resources,
process number and the scale of the computing
problem.

IV. PARALLEL PROGRAM EXAMPLES

This section presents parallel program examples.
The platforms that are used for testing the examples
are described in Table 1. Platform 1, a graphic card
NVIDIA GeForce 150MX [8], has 384 cores running
at 1.53 GHz and 48 (GB/sec) memory bandwidth.
Platform 2, a graphic card NVIDIA TITAN X [9],
has 3584 cores running at 1.41 GHz and 480
(GB/sec) memory bandwidth.

CUDA-aware OpenMPI implementation is used
for building a single MPI + CUDA program on
Ubuntu OS. Open MPI can handle multiple GPU
cards but in our case, there is only one GPU. The
GPU card is utilized and shared between several
MPI processes. Tests are performed on two diff erent
classes of parallel processing capability hardware
(Table I). It is important computing hardware and
software to be compatible, update and properly
configured.

A. Examples

The examples represent simple MPI and CUDA
programs that are built according to the parallel
strategies presented in the previous section. Here the
examples represent the basic program skeleton
structure of the explained strategies. One way to
build a single MPI+CUDA program is to put both
code MPI and CUDA code in a single file. This
program can be compiled using nvcc, which
internally uses gcc/g++ to compile your C/C++
code, and linked to your MPI library. Another way
is to have MPI and CUDA code separate in two
files, main.c and example.cu respectively.

The code from the first example is according to
the Basic Parallel Strategy Model and contains the
mentioned two files main.c and examples.cu. The
main.c, containing the call to CUDA file, would
look like:

#include <mpi.h>

#include <stdio.h>

//Function declaration

void call_kernel(...);

int main(int argc, char *argv[]) {

//variable declarations

int myrank, nProcs;

//Allocate memory

...

/* Initialize the MPI execution

environment. */

TABLE I. DESCRIPTION OF THE TEST PLATFORM

Environment Platform 1 Platform 2

CPU Intel i7-8565U, 1.80GHz
Intel Xeon E5-2640,

2.50GHz

Memory 8 GB DDR4 2400 MHz
48 GB DDR3 1333

MHz

GPU GeForce MX150
Nvidia TITAN X
(Pascal)

OS Ubuntu 16.04 LTS 64-bit
Ubuntu 18.04.3

LTS 64-bit

Compiler gcc 5.4.0 gcc 7.4.0

CUDA

compilation
tools

10.1 9.1

GPU Driver V416.56 V430.50

MPI (Open MPI) 1.10.2 (Open MPI) 3.3a2

International Conference on Information Technology and Development of Education – ITRO 2020

October, 2020. Zrenjanin, Republic of Serbia

MPI_Init(argc, argv);

/* Get the number of MPI processes and

the rank of this process. */

MPI_Comm_rank(MPI_COMM_WORLD,&myRank);

MPI_Comm_size(MPI_COMM_WORLD,&nProcs);

/* Call function 'call_kernel()' from

CUDA file example.cu */

call_kernel(...);

// Terminates MPI execution environment

MPI_Finalize();

//Free memory

...

}

In example.cu, the call_kernel() function is
defined with the 'extern' keyword to make it
accessible from main.c. The code it would look like:

#include <cuda.h>

#include <cuda_runtime.h>

#include <stdio.h>

//CUDA kernel

__global__ void __kernel__(...)

{

 ... // Do some work

}

extern "C" void call_kernel(...)

{

//Load CPU data into GPU buffers

__kernel__<<<BlocksPerGrid,

ThreadsPerBlock >>>(...);

//Transfer data from GPU to CPU

//Free device memory

}

The second example is based on the Master-
Workers Parallel Strategy Model. It also consists of
two files, main.c and example.cu. The main.c,
containing the call to CUDA file, would look like:

#include <mpi.h>

#include <stdio.h>

#define ROOT 0

//message to processors

#define END_MSG 1

#define GET_TASK 2

#define NEW_TASK 3

#define NO_TASK 4

#define DONE 5

//Function declaration

void call_kernel(...);

int main(int argc, char **argv) {

// Variable declarations

int myRank, //id of current processor

 nprocs; //number of processors

int rc; // result from MPI operation

int dummy = 1; // fictive variable

...

//Allocate memory

...

/* Initialize the MPI execution

environment*/

MPI_Init(&argc, &argv);

/* Get the number of MPI processes and

the id rank of this process. */

MPI_Comm_size(MPI_COMM_WORLD,&nProcs);

MPI_Comm_rank(MPI_COMM_WORLD,&myRank);

// Status of a reception operation

MPI_Status status;
if(myRank == 0) // Root

{

int hasWork = 15; // number of works

while(hasWork >= 0){

/* Wait message (dummy) from free

processor (MPI_ANY_SOURCE)*/

rc= MPI_Recv(&dummy, 1, MPI_INT,

MPI_ANY_SOURCE, GET_TASK,

MPI_COMM_WORLD, &status);

// Master send work

rc = MPI_Send(&hasWork, 1, MPI_INT,

status.MPI_SOURCE, NEW_TASK,

MPI_COMM_WORLD);

hasWork--; //Decrement work variable

}

/* When while quit this means that no

more works and Root send message DONE

to all free processors */

int k;

for(k = 0; k < nprocs-1; k++) {

dummy = -100;

rc = MPI_Recv(&dummy, 1, MPI_INT,

MPI_ANY_SOURCE, GET_TASK,

MPI_COMM_WORLD, &status);

rc = MPI_Send(&dummy, 1, MPI_INT,

status.MPI_SOURCE, DONE,

MPI_COMM_WORLD);

} }

if(myRank != 0)// all other processors

{

//Must have end case, else not to work

while(1) {

int work, other;

dummy = myRank;

/* send to Root (0), that I am free,

and want some work */

rc = MPI_Send(&dummy, 1, MPI_INT, 0,

GET_TASK, MPI_COMM_WORLD);

//receive work from Root (int work)

rc = MPI_Recv(&work, 1, MPI_INT, 0,

MPI_ANY_TAG, MPI_COMM_WORLD, &status);

// quit while

if(status.MPI_TAG == DONE){

break;

}

// Do some work from process

if(status.MPI_TAG == NEW_TASK) {

/* Call function 'call_kernel()' from

CUDA file example.cu */

International Conference on Information Technology and Development of Education – ITRO 2020

October, 2020. Zrenjanin, Republic of Serbia

call_kernel(...);

} } }

// Terminates MPI execution environment
MPI_Finalize();

}

The example.cu, contains the same code as Basic
Parallel Strategy Model where call_kernel() is
defined with the 'extern' keyword to make it
accessible from main.c.

B. Compile procedure

The described below way of building
MPI+CUDA programs contains two files. These two
files can be compiled using mpicc, and nvcc
respectively into object files (.o) and combined into a
single executable file using mpicc. Using mpicc
means that the CUDA library must be linked.

The program can be build/executed in Debug and
Release mode. Making object files, linking, building,
and executing the programs were performed by using
Ubuntu terminal and suitable commands. The
compile instructions for build and execute in Debug
mode, would look like:

mpicc -c main.c -o main.o

nvcc -c example.cu -o example.o

mpicc main.o example.o -lcudart -L

/usr/local/cuda-10.0/lib64/ -lstdc++ -o

mpicuda

It is necessary to carefully link the CUDA library.
In the example above is shown linking the CUDA
library executed on Platform 1 (see Table I).
Compile instruction that look like:

mpiexec -n <numprocs> <program>

is one way to start <program> with the name of
the program with an initial MPI_COMM_WORLD
whose group contains <numprocs> number of
processes. Example for request two processes to test
the program would look like:

mpiexec -np 2 ./mpicuda

The compile instructions with additional
optimization and customize options [10] [11] [12]
for build and execute in Release mode, would look
like:

mpicc -O3 -Wall -c -fmessage-length=0 -

MMD -MP -MF"main.d" -MT"main.d" -o

"main.o" "main.c"

nvcc -O3 --compile --relocatable-

device-code=false -gencode

arch=compute_50,code=compute_50 -

gencode arch=compute_50,code=sm_50 -

D_FORCE_INLINES -x cu -o "example.o"

"example.cu"

mpicc main.o example.o -lcudart -L

/usr/local/cuda-10.1/lib64/ -lstdc++ -o

mpicuda

The compile instruction for executing the by
request two processes to test the program would
look like:

mpiexec -np 2 ./mpicuda

If there is a cluster with multiple CPU and GPU
it can call different execution configuration. For
example, it can request two processes and two GPUs
to test the program by using PBS (Portable Batch
System) script. Another way to execute the program
on more than one GPU is expressly use of CUDA
call cudaSetDevice(number) to set the current GPU,
where number is GPU card ID (identifier).

V. CONCLUSIONS

In this paper, a short guideline is given for
combining the two parallel programming
approaches of MPI and CUDA. There is brief
clarification of both parallel programming models.
Through the two parallel programming strategies
our intention is to get parallel programming closer
to the students. In the last section the program
skeleton of an example is shown. This example can
be a starting point for building complex program
structure. In the end of the section is shown how to
compile and run the combined MPI and CUDA
program.

ACKNOWLEDGMENTS

We gratefully acknowledge the support of
NVIDIA Corporation with the donation of the Titan
X Pascal GPU used for this research.

REFERENCES

[1] Kirk, D. B., Wen-mei W. Hwu. Programming Massively Parallel
Processors: A Hands-on Approach. Elsevier, 2013.

[2] Kurzak, J., D. A. Bader, J. Dongarra. Scientific Computing with
Multicore and Accelerators. CRC Press, 2010.

[3] Mittal, S. and Vetter, J.S.: A survey of CPU-GPU heterogeneous
computing techniques. ACM Computing Surveys (CSUR), 47(4),
pp.1–35, 2015.

[4] Quinn Michael J.: Parallel Programming in C with MPI and
OpenMP. 1st ed. McGraw-Hill Inc. 2004.

[5] Nvidia CUDA Home Page, https://developer.nvidia.com/cuda-
zone. Last accessed 16 August 2020

[6] Lindholm E., J. Nickolls, S. Oberman, J. Montrym. NVIDIA
Tesla: A Unified Graphics and Computing Architecture, IEEE
Micro, Vol. 28, Issue 2, 2008.

[7] Flynn M., Flynn’s Taxonomy. In: Padua D. (eds) Encyclopedia of
Parallel Computing. Springer, Boston, MA., pp. 689-697, 2011.

[8] NVIDIA GeForce 150MX Specification,
https://www.geforce.com/hardware/notebook-gpus/geforce-
mx150. Last accessed 14 April 2020

[9] NVIDIA GeForce TITAN X Specification,
https://www.nvidia.com/en-us/geforce/products/10series/titan-x-
pascal/. Last accessed 16 August 2020

International Conference on Information Technology and Development of Education – ITRO 2020

October, 2020. Zrenjanin, Republic of Serbia

[10] NVCC :: CUDA Toolkit Documentation, https://docs.nvidia.com/

cuda/cuda-compiler-driver-nvcc/index.html. Last accessed 12
September 2020

[11] GCC Command Options, https://gcc.gnu.org/onlinedocs/gcc-
3.1.1/gcc/Invoking-GCC.html. Last accessed 12 September 2020

[12] FAQ: Compiling MPI applications, https://www.open-
mpi.org/faq/?category=mpi-apps. Last accessed 12 September
2020

